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ABSTRACT
We apply the Delaunay Tessellation Field Estimator (DTFE) to reconstruct and analyse the

matter distribution and cosmic velocity flows in the local Universe on the basis of the PSCz
galaxy survey. The prime objective of this study is the production of optimal resolution 3D

maps of the volume-weighted velocity and density fields throughout the nearby universe, the

basis for a detailed study of the structure and dynamics of the cosmic web at each level probed

by underlying galaxy sample. Fully volume-covering 3D maps of the density and (volume-

weighted) velocity fields in the cosmic vicinity, out to a distance of 150 h−1 Mpc, are presented.

Based on the Voronoi and Delaunay tessellation defined by the spatial galaxy sample, DTFE

involves the estimate of density values on the basis of the volume of the related Delaunay

tetrahedra and the subsequent use of the Delaunay tessellation as natural multidimensional

(linear) interpolation grid for the corresponding density and velocity fields throughout the

sample volume. The linearized model of the spatial galaxy distribution and the corresponding

peculiar velocities of the PSCz galaxy sample, produced by Branchini et al., forms the input

sample for the DTFE study. The DTFE maps reproduce the high-density supercluster regions

in optimal detail, both their internal structure as well as their elongated or flattened shape. The

corresponding velocity flows trace the bulk and shear flows marking the region extending from

the Pisces–Perseus supercluster, via the Local Superclusters, towards the Hydra–Centaurus

and the Shapley concentration. The most outstanding and unique feature of the DTFE maps

is the sharply defined radial outflow regions in and around underdense voids, marking the

dynamical importance of voids in the local Universe. The maximum expansion rate of voids

defines a sharp cut-off in the DTFE velocity divergence probability distribution function. We

found that on the basis of this cut-off DTFE manages to consistently reproduce the value of

�m ≈ 0.35 underlying the linearized velocity data set.
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1 I N T RO D U C T I O N

The measurement and analysis of the peculiar velocities of galax-

ies forms a major probe of the cosmic structure formation process.

The galaxy velocities reflect the large-scale matter flows which ac-

cording to the gravitational instability scenario for cosmic structure

formation go along with the formation and emergence of structure

in the Universe. They are the response to the gradually unfolding

underlying inhomogeneities in the cosmic matter distribution. As a

result, the comparison of the induced cosmic flows on Mpc scales

with the underlying matter distribution represents a potentially pow-
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erful instrument to further our insight into the dynamics of cosmic

structure formation process and in inferring the values of a variety

of key cosmological parameters.

Over the past two decades a major effort has been directed to-

wards compiling large samples of galaxy peculiar velocities (see

Dekel 1994; Strauss & Willick 1995, for reviews of the subject). By

opening up the window on the dynamics of the cosmic structure for-

mation process the analysis of these catalogues of galaxy peculiar

velocities has led to enormous progress in our understanding of the

process. This is particularly true for scales larger than �10 h−1 Mpc,

scales on which structure formation still resides in the linear phase

of development. In particular the Mark III catalogue, with an effec-

tive depth ≈60 h−1 Mpc, stands as a landmark achievement (Willick

et al. 1997).
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Despite the successes progress has remained limited given the

sizeable random and systematic errors that beset catalogues of pe-

culiar velocities of galaxies and clusters. It allowed the mapping of

the cosmic flow field in only a rather restricted volume of the nearby

universe. Perhaps even more significant is that the low quality of the

peculiar velocity data, in combination with their inhomogeneous

and sparse spatial distribution, has prevented the development of

an equally compelling and complete view of cosmic dynamics at

the higher spatial resolution needed to probe and understand the

dynamics of non-linear structures. It is on these scales of a few

Mpc that the structure formation process has progressed to the more

advanced quasi-linear stage and has left an imprint of genuinely rec-

ognizable cosmological structures and patterns. The characteristic

flattened and filamentary features of the cosmic web, as well as the

underdense void regions, are particularly outstanding examples. As

yet it has not been possible to map the flows in and around these

emerging structures.

Progress in the study of large-scale motions will not only de-

pend on the availability of a substantially larger, better defined and

considerably more accurate sample of galaxy peculiar velocities.

Equally important will be the use of a more sophisticated machinery

to handle the discrete, sparse and usually inhomogeneously sampled

galaxy velocity data sets. It does remain a challenge to transform

these into properly defined velocity maps throughout the surveyed

volume. It brings to the fore the issues of interpolation of discrete

data to any location within a given volume as well as the issue

of the choice for a proper filtering prescription. As a consequence

of the specific choices and assumptions involved with a particular

method not all information inherent in the data set is preserved, and

the resulting analysis does usually not include all available large-

and small-scale properties of the peculiar velocity field. As for the

first issue, the data interpolation, the measured peculiar velocities

need to be interpolated into regions devoid of data. A conventional

approach is that of interpolation of the discrete data set to regular

grid locations by means of a fixed interpolation kernel. A notable

example is that of the TSC kernel (see Hockney & Eastwood 1988).

It is straightforward to show, however, that this will result in a mass-

weighted quantity (Bernardeau & van de Weygaert 1996). This has

confused comparisons with analytically derived results, as most of

these concern volume-weighted quantities. The second aspect is that

of the filter choice for the interpolation procedure. One may apply

a fixed, global or local filter kernel. For sensibly defined field val-

ues it is important that data get filtered over an appropriately large

volume. Amongst other, shot-noise effects should be suppressed.

Conventionally, the galaxy peculiar velocities are filtered on a uni-

form fixed scale set by the requirement that also the sparsest sampled

regions are properly averaged over. The resulting velocity map is

one in which all the velocity information on scales smaller than the

filter size has been filtered out. The most widely applied example

is that of Gaussian filters (e.g. Bertschinger et al. 1990; Bernardeau

et al. 1995; Fisher et al. 1995; Baker et al. 1998; Branchini et al.

1999; Dekel et al. 1999).

In this study we investigate the performance of the Delaunay Tes-
sellation Field Estimator – DTFE – towards recovering the spatial

density field and velocity flow in the nearby universe. DTFE is a

self-adaptive density estimation and multidimensional interpolation

scheme which does not make use of any artificial, user-specified fil-

tering Schaap & van de Weygaert (2000). Currently DTFE is the

most elaborate tessellation-based filter and interpolation scheme

available to the field of astrophysics and astronomy (see Section 3.2).

It belongs to a wider generic class of natural neighbour interpo-

lations schemes. As a linear multidimensional field interpolation

scheme DTFE may be regarded as the linear first-order equivalent

of the higher order natural neighbour algorithms (NN-neighbour)

for spatial interpolation (see Sibson 1981; Okabe et al. 2000).

DTFE and NN-neighbour schemes are based upon the use of

the Voronoi and Delaunay tessellations of a given spatial discrete

point set (Voronoi 1908; Delaunay 1934) (see Okabe et al. (2000)

for an excellent and extensive overview). Voronoi and Delaunay

tessellations epitomize a purely locally defined division of space.

Their self-adaptive nature concerns both spatial resolution and lo-

cal geometry, to which they adjust through their definition as region

of influence amidst their natural neighbours. DTFE uses the high

level of sensitivity of the Voronoi/Delaunay tessellation to the local

point distribution to produce an estimate of the local density at each

sample point (van de Weygaert 1991, 1994). For telling illustra-

tions see Schaap & van de Weygaert (2007). Subsequently, it uses

the Delaunay tessellation as multidimensional spatial interpolation

grid. Unique within the context of NN-neighbour techniques, DTFE

includes the explicit extension towards the self-adaptive determina-

tion of density fields on the basis of the spatial distribution of the

point set itself, defined by Schaap & van de Weygaert (2000). Also

important is that its linear nature ascertains its applicability to large

data sets involving more than a million points.

We apply DTFE to the study of the spatial mass distribution and

velocity field in the local Universe on the basis of a sample of galaxy

positions and velocities inferred from the PSCz catalogue (Branchini

et al. 1999). A uniform, densely sampled and fully volume-covering

sample of galaxy peculiar velocities in the local Universe does not

(yet) exist. We take the alternative of using the galaxy velocities and

positions inferred from the uniform all-sky PSCz galaxy redshift

sample. The PSCz galaxy sample is the last and best defined galaxy

redshift selection from the IRAS catalogue (Saunders et al. 2000).

This context guarantees the near uniform and well-defined depth

and sky coverage essential for a self-consistent reconstruction of

density and velocity fields within its volume of the nearby universe

(Branchini et al. 1999; Schmoldt et al. 1999; Branchini et al. 2001;

Teodoro et al. 2003). Although this involves a reconstruction on the

basis of linear perturbation theory and the velocity field therefore

does not contain proper non-linear components the spatial patterns

outlined by the galaxies’ positions do provide a reasonable spatial

configuration to test DTFE over its ability to recover patterns in the

velocity field.

This paper will demonstrate the virtues and potential of the DTFE

method in the analysis of observational data, in particular in the ca-

pacity of DTFE to reveal intricate anisotropic patterns and that of

rendering the multiscale character of both density and velocity fields.

The objective of this study is first and foremost the production of

maps of the volume-weighted velocity and density fields through-

out the nearby universe. The self-adaptive nature of the DTFE tech-

nique yields an optimal resolution of the most interesting features,

and this will enable the identification of characteristic patterns in

the flow field and of their principal sources in the local density field.

By default – to the DTFE method – this includes shear flows, (su-

per)cluster infall and void outflow. By illuminating their relationship

to the nearby and surrounding large-scale structures the DTFE pro-

cedure will help in increasing our understanding of the dynamics

of the formation of the various structural components of the cosmic

web (Bond, Kofman & Pogosyan 1996) (also see van de Weygaert

2002).

An additional aspect of the presented study is the DTFE perfor-

mance in a non-uniformly sampled galaxy distribution. Because

the PSCz galaxy catalogue on which our analysis is based in-

volves a flux-limited selection of galaxies the sampling density
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gradually decreases outward. While DTFE is capable of correcting

the density values accordingly it also introduces a differential reso-

lution scale along the reconstructed density and velocity field maps.

While DTFE guarantees the preservation of an optimal share of in-

formation on the velocity field, this will automatically diminish with

the outwardly decreasing selection function and the corresponding

decrease in sampling density. The spectral coverage of the recon-

structed DTFE fields will therefore be seriously affected towards the

outer region of the PSCz volume, the velocity field reconstructions

less so as they are dominated by lower frequency components.

We introduce the PSCz sample in Section 2, along with a short de-

scription of the linearization process to produce the sample of galaxy

positions and (peculiar) velocities. This is followed by an outline of

the DTFE procedure for density and velocity fields in Section 3. A

cosmographic description of the spatial structures within the PSCz
volume of the local Universe is contained in Section 4, after which

in Section 5 we turn to the velocity flow field within the same vol-

ume. The issue of the differential spatial resolution of the DTFE

density and velocity maps is discussed at some length in Section 6,

while we describe some four specific features in the local Universe

in Section 7. Finally, we discuss the spatial distribution of the ve-

locity divergence field and its relation with the density distribution.

Given the rather scant information on the velocity shear field we

briefly treat its appearance in Section 9. Section 10 concludes our

study with a summary and a description of prospects and relation to

other work.

2 P S C z: G A L A X Y P O S I T I O N S A N D
V E L O C I T I E S

For the study of the structure and kinematics of the local cosmic

neighbourhood we base ourselves upon the PSCz catalogue.

2.1 The PSCz sample

The IRAS-PSCz catalogue (Saunders et al. 2000) is an extension

of the 1.2-Jy catalogue (Fisher et al. 1995). It contains ∼15 500

galaxies with a flux at 60 μm larger than 0.6 Jy. For a full descrip-

tion of the catalogue, selection criteria and the procedures used to

avoid stellar contamination and galactic cirrus, we refer the reader

to Saunders et al. (2000). For our purposes the most important char-

acteristics of the catalogue are the large area sampled (∼84 per cent

of the sky), its depth with a median redshift of 8500 km s−1, and

the dense sampling (the mean galaxy separation at 10 000 km s−1 is

〈l〉 = 1000 km s−1). It implies that PSCz contains most of the grav-

itationally relevant mass concentrations in our local cosmic neigh-

bourhood, certainly sufficient to explain and study the cosmic flows

within a local volume of radius ∼120 h−1 Mpc.

Because of the flux-limited nature of the PSCz catalogue, there

is a decrease in the objects’ sampling as a function of distance from

the observer. This is quantified by the radial selection function of

the catalogue, ψ(r), where the selection function is defined as the

fraction of the galaxy number density that is observed above the flux

limit at some distance r. To ascertain the proper number density

of objects each galaxy is weighed by the inverse of the selection

function (see equation 2). For the selection function we used the

expression ψ(r) described in Branchini et al. (1999).

In addition to this selection function correction, further necessary

corrections are that for the 16 per cent of the missing sky devoid of

data, due to the cirrus emission and unobserved areas, and that for

redshift distortions. Here we have followed Branchini et al. (1999)

in using their spatially reconstructed PSCz catalogue.

2.2 PSCz: from redshift space to physical space

To translate the redshift-space distribution of galaxies in the PSCz
catalogue into galaxy positions and velocities in real space we use

base our study on a galaxy sample which has been processed by the

linear theory for gravitational instability (Peebles 1980).

Our sample has been obtained along the lines of method I de-

scribed in Branchini et al. (1999). The method is a specific realiza-

tion of an iterative technique to minimize redshift-space distortions

(Yahil et al. 1991). For a detailed exposition of the method we refer

to Branchini et al. (1999). Starting with the original redshift distri-

bution as input and computing the corresponding peculiar velocity

fields, the spatial position of each galaxy is corrected accordingly.

This is repeated in each iterative step until the spatial distribution of

the galaxies and the inferred peculiar velocities are mutually con-

sistent. In order to minimize the uncertainties derived from the lack

of information on scales larger than the PSCz catalogue, the veloc-

ity predictions in the PSCz region were made in the Local Group

frame.

In order to translate the distribution of galaxies into a gravitational

field, and implied velocity field a value for the β parameter, the ratio

between the linear velocity field factor f(�) (Peebles 1980) and the

(supposedly) linear bias factor b between galaxy and mass density,

needs to be assumed. A value of β = 0.5 has been adopted. The

reliability of the corresponding modelled density and velocity has

been confirmed in several studies, including density–density and

velocity–velocity comparisons with other surveys (e.g. Branchini

et al. 2001; Zaroubi et al. 2002). While the reconstruction procedure

assumes linearity, one may expect its validity to extend into the early

non-linear stages (Branchini et al. 1999). At hindsight, this claim

may indeed be confirmed given the recovery by our DTFE technique

of well-behaved mild non-linear density and velocity divergence

distribution functions (see Fig. 6 and Section 9.4).

An important condition for a consistent linear reconstruction of

the velocity and density field is that the density fluctuations should

have a small amplitude. In order to ascertain this the gravity field

has been smoothed with a top-hat filter whose radius is 500 km s−1

within the inner 50 h−1 Mpc and subsequently increases following

the average intergalaxy distance (see Fig. 2). An additional im-

plicit requirement for the linearization process is that the vorticity

modes in the peculiar velocity field are to be minimized. For the

well-defined and representative sample of PSCz catalogue this is

accomplished for R ≈ 5 h−1 Mpc. For comparison, it may be worth-

while to realize that a Gaussian kernel of 12 h−1 Mpc was employed

by Dekel et al. (1999) to obtain a successful and representative lin-

earization of the measured velocity field of the Mark III catalogue

(Willick et al. 1997).

A complication for the linearization procedure is that of the ve-

locity field around high-density regions. In the immediate surround-

ings of clusters of galaxies, the inflow of matter becomes so fast that

they turn into triple-valued redshift regions. Romano-Dı́az (2004)

addressed this problem by considering two different samples. In one

sample the triple-valued regions were collapsed, in the other they

were not. Results showed that the implicit smoothing procedure of

the linearization procedure minimizes this effect. Differences be-

tween collapsed and uncollapsed samples are less than 10 per cent

for the bulk flow and velocity shear components, and consistent at

the 1σ level. Here the velocity model which leaves the triple-valued

regions uncollapsed has been followed.

The final product of the linearization velocity reconstruction pro-

cedure is a galaxy catalogue containing for each individual galaxy

its real spatial position and its peculiar velocity. Our DTFE analysis
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of the PSCz density and velocity fields is based upon this density

and linearized velocity field.

3 T H E D T F E M E T H O D

The DTFE interpolation method was introduced by Schaap & van

de Weygaert (2000) (see also Schaap 2006), for rendering fully

volume-covering and volume-weighted fields from a discrete set

of sampled field values, including the density field as defined by

the point sampling itself. DTFE involves an extension of the in-

terpolation procedure described by Bernardeau & van de Weygaert

(1996), who used Delaunay tessellations for the specific purpose

of estimating the cosmic velocity divergence field, and showed the

method’s superior performance with respect to conventional inter-

polation procedures.

3.1 Voronoi and Delaunay tessellations

The DTFE method is based upon the Voronoi and Delaunay tessel-
lations of the point sample (see Okabe et al. 2000, and references

therein). A Delaunay tetrahedron is defined by the set of four points

whose circumscribing sphere does not contain any of the other points

in the generating set (Delaunay 1934) (triangles in two dimensions).

The Delaunay tessellation is intimately related to the Voronoi tes-

sellation of the point set, they are each others dual. The Voronoi

tessellation of a point set is the division of space into mutually dis-

junct polyhedra, each polyhedron consisting of the part of space

closer to the defining point than any of the other points (Voronoi

1908; Okabe et al. 2000). These spatial volume-covering divisions

of space into mutually disjunct triangular (2D) or tetrahedral (3D)

cells adapt to the local density and geometry of the point distribution.

Astronomical exploitation of Voronoi and Delaunay tessellations

have as yet remained rather limited, despite the fact that a great

many studies are based on observations which by their nature rep-

resent a discretely and irregularly sampled probe of an underlying

smooth distribution. None the less, in recent years the self-adaptive

virtues of Voronoi tessellations have been recognized in a gradu-

ally increasing stream of astronomical studies. Most of these seek

to use the density sensitivity of Voronoi cell volumes and even De-

launay cell volumes to detect density peaks like clusters of galaxies

amidst a general background of galaxies. In astronomy, the first ap-

plication of Voronoi tessellations as density/intensity estimators was

forwarded by Ebeling & Wiedenmann (1993), who sought to iden-

tify X-ray clusters as overdensities in X-ray photon counts. More

recently, Ramella et al. (2001), Marinoni et al. (2002), Kim et al.

(2002) and Lopes et al. (2004) used similar algorithms to isolate

clusters within catalogues of galaxy positions produced by galaxy

sky or redshift surveys. The explicit and additional ability of the

more elaborate DTFE formalism to trace sharp density contrasts

impelled Bradac et al. (2004) to compute the surface density map

for a galaxy from the projection of the DTFE volume density field.

The obtained surface density map was used to compute the gravita-

tional lensing pattern around the object, upon which Li et al. (2006)

evaluated the method in its ability to trace higher order singularities.

3.2 Local spatial adaptivity

The point in case for its pattern tracing characteristics is provided

by the right-hand panel of Fig. 3 (also see fig. 4 in Schaap & van de

Weygaert 2007), showing the 2D Delaunay triangulation for a sec-

tion along the Z-supergalactic plane through the galaxy set which

we analyse in this work, the PSCz catalogue. The DTFE method

exploits these virtues and adapts automatically and in an entirely

natural fashion to changes in the density or the geometry of the dis-

tribution of sampling points. Instead of involving user-defined filters

which are based upon artificial smoothing kernels the resulting main

virtue of DTFE is that it is intrinsically self-adaptive. In essence, it

involves filtering kernels which are defined by the local density and
geometry of the point process or object distribution. The Voronoi

tessellation is used to obtain optimal local estimates of the spatial

density (see section 8.5 Okabe et al. 2000), while the tetrahedra of

its dual Delaunay tessellation are used as multidimensional inter-

vals for linear interpolation of the field values sampled or estimated

at the location of the sample points (Okabe et al. 2000, chapter 6).

On the basis of its interpolation characteristics DTFE is the first-

order version of a wider class of tessellation-based multidimensional
and entirely local interpolation procedures, commonly known as

natural neighbour interpolation (Watson 1992; Sambridge, Braun

& McQueen 1995; Sukumar 1998) (also see Okabe et al. 2000,

chapter 6). In a variety of applied sciences the concept of natu-

ral neighbour interpolation and other advanced tessellation applica-

tions have already found wide application. Particularly successful

and noteworthy examples may be found in computer visualization

and surface rendering, geophysics (see e.g. Sambridge et al. 1995;

Sambridge 1999) and engineering mechanics (Sukumar 1998).

3.3 DTFE: density and velocity fields

A crucial aspect of the success of the Delaunay interpolation proce-

dure (Bernardeau & van de Weygaert 1996) is that it reproduces the

volume-weighted velocity field, correcting a few fundamental bi-

ases in estimates of higher order velocity field moments. While, of-

ten unintentionally, most conventional interpolation schemes yield

the mass-weighted velocity, it is the volume-weighted velocity es-

timate which figures in analytical expressions. This is particularly

true for velocity field perturbation analyses within the context of

gravitational instability scenarios based on primordial Gaussian per-

turbations. The validity of the Delaunay (and therefore also DTFE)

velocity field interpolation scheme is perhaps most strongly em-

phasized by its success in reproducing the non-linear velocity di-

vergence distribution function, specifically in its detailed agree-

ment with second-order perturbation theory (Bernardeau & van de

Weygaert 1996). The derived distribution function appears to be

so accurate that it enables the accurate determination of cosmo-

logical parameters (Bernardeau & van de Weygaert 1997). This is

even more interesting as a mild non-Gaussian velocity divergence

distribution would enable the breaking of the degeneracy between

the cosmic matter density � and the bias b between the matter and

galaxy distribution (Bernardeau 1994; �Lokas et al. 1995).

An essential and unique step of the DTFE procedure concerns

the determination of field values at the sample points. For the veloc-

ity field this simply involves the measured velocities at the sample

points. More complex is the issue for the density/intensity field.

Tessellation-based methods for estimating the density have been in-

troduced by Brown (1965) and Ord (1978). On the condition that

the sample points are sampled proportionally to an underlying den-

sity/intensity field, the Voronoi tessellation is used to define optimal

– local – density estimates (Okabe et al. 2000, section 8.5). A minor

modification was introduced by Schaap & van de Weygaert (2000):

in order to assure the mass-conserving nature of the DTFE inter-

polation procedure the sample point density estimates relate to the

contiguous Voronoi cell (see Fig. 3).

Amongst the NN-neighbour schemes, DTFE is unique in in-

cluding the tessellation-based density estimates on the basis of the
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sampling point distribution itself. By restricting itself to a linear in-

terpolation scheme it remains feasible to apply the method to data

sets of millions of points. The latter is essential for the viability of

the technique within a cosmological context.

3.4 DTFE and cosmic structure formation

Three major characteristics of the Mpc scale universe are the (1)

the web-like spatial arrangement of galaxies and mass into elon-

gated filaments, sheet-like walls and dense compact clusters, (2) the

existence of large near-empty void regions and (3) the hierarchical

nature of the mass distribution, marked by substructure over a wide

range of scales and densities. According to the standard paradigm

of cosmic structure formation, the theory of gravitational instability

(Peebles 1980) this intricate spatial pattern has emerged as a result

of the gravitational growth of tiny (Gaussian) density perturbations

and the accompanying tiny velocity perturbations in the primordial

Universe. Schaap & van de Weygaert (2007) demonstrate the ability

of DTFE to successfully reproduce and quantify these key aspects

of the non-linear web-like cosmic matter distribution in the Mpc

universe.

(i) The hierarchically structured matter distribution is resolved

to the smallest possible resolution scale set by the particle number

density.

(ii) DTFE retains the morphology, i.e. shape of the features and

patterns in the matter distribution. The characteristic anisotropic fil-

amentary and planar features of the cosmic web are fully reproduced

in the continuous DTFE density field.

(iii) The near-empty voids in the spatial matter distribution are

reproduced optimally. Both their flat internal density distribution

as well as their sharp outline and boundary are recovered in detail

through the interpolation characteristics of the DTFE algorithm as

well as by its tendency to suppress the shot-noise in these sparsely

sampled regions (Schaap 2006).

The relation between the cosmic density and cosmic velocity field

is an important piece of information on the dynamics of the cos-

mic structure formation process. When DTFE is applied to N-body

simulations of structure formation, it does manage to successfully

reproduce the physical and spatial correlation between cosmic den-

sity and velocity fields for highly non-linear structures. An early

analysis of a GIF N-body simulation did show a few remarkable

examples (see e.g. Schaap 2006): the velocity flows in and around

the cores of high-density regions – for as long as it concerns single-

stream laminar flows – are traced in detail by the DTFE density and

velocity maps. Within the same simulations, the void-like regions

were rendered as super-Hubble expanding bubbles, consistent with

our view of void dynamics (Icke 1984; Sheth & van de Weygaert

2004). Considerably more detailed recent studies (Schaap & van de

Weygaert 2003; Romano-Dı́az 2004; Schaap 2006) confirmed that

DTFE manages to trace the correspondence between velocity and

density field over a large range of scales, resolving both small- and

large-scale features of the velocity field.

Extrapolating this observation, and encouraged by the success of

Voronoi-based methods in identifying dark haloes in N-body simu-

lations (Neyrinck, Gnedin & Hamilton 2005) Arad, Dekel & Klypin

(2004) used DTFE to assess the 6D phase-space density distribu-

tion of dark haloes in cosmological N-body simulations. While a

fully 6D analysis may be computationally cumbersome (Ascasibar

& Binney 2005), the splitting of the problem into a separate spatial

and velocity-space 3D tessellation may indeed hold promise for an

innovative analysis of the dynamical evolution of dark haloes.

3.5 DTFE: alternatives

The performance of DTFE has been tested extensively with respect

to the performance of the rigid grid TSC method and the spatially

adaptive smoothed particle hydrodynamics (SPH) method. The TSC

procedure is rigid with respect to the spatial scale as well as the shape

of the mass distribution. SPH kernels are adaptive with respect to

the local density of points but lack sensitivity to the geometry of the

mass distribution.

Schaap & van de Weygaert (2007) present numerous tests of

the ability of DTFE to resolve spatial substructure and to detect

anisotropic features. With respect to spatial resolution, DTFE man-

ages not only to resolve maps of self-similar Soneira–Peebles mod-

els with the highest spatial resolution but also to recover the under-

lying scaling indices. Both the TSC and SPH fields fail completely

in reproducing the proper scaling properties. While TSC does not

produce any scaling at all, SPH does manage to reproduce scaling of

the density field over a wide range of spatial scales. However, it fails

fully in recovering the proper scaling indices. In addition, DTFE is

also the only procedure whose density field has an autocorrelation
function which agrees completely, down to the smallest scales, with

the two-point correlation function of the Soneira–Peebles point dis-

tribution.

Also with respect to its ability to recover web-like features in

the cosmic matter distribution the virtue of DTFE with respect to

the TSC and SPH methods becomes more evident. While the SPH

procedure fares considerably better than TSC its spherical smooth-

ing kernel does introduce some artefacts and deficiencies when it

gets to resolving the finest features. Defined by a fixed number of

neighbours, SPH tends to smear out the smallest structures, partic-

ularly for anisotropically shaped ones, and results in features which

occupy a significantly larger volume than the corresponding galaxy

distribution. However, also DTFE patterns do contain some arte-

facts, of which the triangular imprint of its smoothing kernel is the

most pronounced one.

3.6 The DTFE general reconstruction procedure

Fig. 1 describes the various stages of the DTFE field reconstruction

procedure. It does so with reference to velocity field reconstruction.

For a specification of the DTFE density field procedure we refer

to Schaap (2006) (also see Schaap & van de Weygaert 2007). In

summary, it consists of the following sequence of steps.

Point sample
Defining the spatial distribution of the point sample:

Density field
Point sample needs to be a general Poisson process of the (supposed)

underlying density field, that is, it needs to be an unbiased sample

of the underlying density field.

General (non-density) field
No stringent requirements upon the stochastic representativeness

of the sampling process will be necessary except that the sample

volume is adequately covered. In other words, the sample points

need not form a uniform sample of the underlying density field.

Boundary Conditions
An important issue, with respect to the subsequent Delaunay tes-

sellation computation and the self-consistency of the DTFE density

and velocity field reconstructions, is that of the assumed boundary

conditions. These will determine the Delaunay and Voronoi cells

that overlap the boundary of the sample volume. Depending upon

the sample at hand, a variety of options exists:

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 2–28



DTFE analysis of the PSCz local Universe 7

Figure 1. DTFE velocity interpolation procedure. The top right-hand panel presents the Delaunay triangulation of the discrete particle positions of the velocity

field presented at the top left-hand panel. The central panels show the velocity gradient computed for each triangle. The colour scale corresponds to the

amplitude of the determinant of the velocity gradient tensor. The right-hand panel depicts the 3D representation of the gradient surface. The height of each

point corresponds to its velocity amplitude. The DTFE velocity field is estimated at the grid points indicated by the coloured grid of the bottom left-hand panel

by assuming a linear variation of the velocity field. The bottom right-hand panel presents the outcome of the DTFE velocity interpolation procedure.
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8 E. Romano-Dı́az and R. van de Weygaert

Vacuum boundary conditions
Outside the sample volume there are no points. This will lead to

infinitely extended (contiguous) Voronoi cells surrounding sample

points near the boundary. Evidently, these cells cannot be used for

DTFE density field estimates and field interpolations: the volume of

the DTFE reconstruction is smaller than that of the sample volume.

Periodic boundary conditions
The point sample is supposed to be repeated periodically in bound-

ary boxes, defining a toroidal topology for the sample volume. The

resulting Delaunay and Voronoi tessellations are also periodic, their

total volume exactly equal to the sample volume. While specific pe-

riodic tessellation algorithms do exist (van de Weygaert 1994), this

is not yet true for most available routines in standard libraries. For

the analysis of N-body simulations this is the most straightforward

and preferable choice.

Buffer conditions
The sample volume box is surrounded by a buffer zone filled

with a synthetic point sample. The density of the synthetic buffer

point sample should be related to the density in the nearby sam-

ple volume. The depth of the buffer zone depends on the den-

sity of the synthetic point sample, it should be sufficiently wide

for any Delaunay or Voronoi cell related to a sample point not

to exceed the buffer zone. A clear condition for a sufficiently

deep buffer zone has been specified by Neyrinck et al. (2005).

When involving velocity field analysis, the velocities of the buffer

points should also follow the velocity distribution of the sample and

be in accordance with the continuity equation. Relevant examples

of possible choices are:

– internal: the analysed sample is a subsample embedded within

a large sample volume, a sufficient number of these sample points

outside the analysis volume is taken along in the DTFE reconstruc-

tion.

– random cloning technique: akin to the technique described by

Yahil et al. (1991).

– constrained random field: realizations employing the existing

correlations in the field (Bertschinger 1987; Hoffman & Ribak

1991; van de Weygaert & Bertschinger 1996).

Delaunay tessellation
Construction of the Delaunay tessellation from the point sample

(see Fig. 3). While we still use our own Voronoi-Delaunay code

van de Weygaert (1994), at present there is a score of efficient

library routines available. Particularly noteworthy is the CGAL

initiative, a large library of computational geometry routines1

Field values point sample
Dependent on whether it concerns the densities at the sample points

or a measured field value there are two options:

General (non-density) field
(Sampled) value of field at sample point.

Density field
The density values at the sampled points are determined from the

corresponding Voronoi tessellations. The estimate of the density at

each sample point is the normalized inverse of the volume of its

contiguous Voronoi cell Wi of each point i. The contiguous Voronoi
cell of a point i is the union of all Delaunay tetrahedra of which

point i forms one of the four vertices (see Fig. 3, second frame, for

an illustration). We recognize two applicable situations:

1 CGAL is a C
++ library of algorithms and data structures for computational

geometry, see www.cgal.org.

– Uniform sampling process: the point sample is an unbiased

sample of the underlying density field. Typical example is that of

N-body simulation particles. For D-dimensional space the density

estimate is,

ρ̂(xi ) = (1 + D)
wi

V (Wi )
, (1)

with wi the weight of sample point i, usually we assume the same

‘mass’ for each point.

– Systematic non-uniform sampling process: sampling density

according to specified selection process. The non-uniform sampling

process is quantified by an a priori known selection function ψ(x).

This situation is typical for galaxy surveys, ψ(x) may encapsulate

differences in sampling density ψ(α, δ) as function of sky position

(α, δ), as well as the radial redshift selection function ψ(r) for

magnitude- or flux-limited surveys. For D-dimensional space the

density estimate is

ρ̂(xi ) = (1 + D)
wi

ψ(xi ) V (Wi )
. (2)

Field Gradient
Calculation of the field gradient estimate ∇̂ f |m in each D-

dimensional Delaunay simplex m (D = 3: tetrahedron; D = 2: tri-

angle) by solving the set of linear equations for the field values at

the positions of the (D + 1) tetrahedron vertices,

∇̂ f |m ⇐=
{

f0 f1 f2 f3

r 0 r 1 r 2 r 3

(3)

Evidently, linear interpolation for a field f is only meaningful when

the field does not fluctuate strongly. Particularly relevant for veloc-

ity field reconstructions is that there should be no orbit crossing

flows within the volume of the Delaunay cell which would involve

multiple velocity values at any one location. In other words, DTFE

velocity field analysis is only significant for laminar flows.

Note that in the case of the sampled field being the velocity field

v we may not only infer the velocity gradient in a Delaunay tetra-

hedron, but also the directly related quantities such as the velocity
divergence, shear and vorticity.

Interpolation
The final basic step of the DTFE procedure is the field interpolation.

The processing and post-processing steps involve numerous inter-

polation calculations, for each of the involved locations x. Given a

location x, the Delaunay tetrahedron m in which it is embedded is

determined. On the basis of the field gradient ∇̂ f |m the field value

is computed by (linear) interpolation,

f̂ (x) = f̂ (xi ) + ∇̂ f
∣∣

m
· (x − xi ). (4)

In principle, higher order interpolation procedures are also possible.

Two relevant procedures are:

– spline interpolation

– natural neighbour interpolation.

Implementation of natural neighbour interpolations is presently in

progress.

Processing
Though basically of the same character for practical purposes we

make a distinction between straightforward processing steps con-

cerning the production of images and simple smoothing filtering

operations on one hand, and more complex post-processing on the

other hand. The latter are treated in the next item. Basic to the
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DTFE analysis of the PSCz local Universe 9

processing steps is the determination of field values following the

interpolation procedure(s) outlined above.

Straightforward ‘first line’ field operations are ‘image reconstruc-
tion’ and, subsequently, ‘smoothing/filtering’.

Image reconstruction
For a set of image points, usually grid points, determine the image
value: formally the average field value within the corresponding grid

cell. In practice a few different strategies may be followed, dictated

by accuracy requirements. These are:

– Formal geometric approach
Integrate over the field values within each grid cell. This im-

plies the calculation of the intersection of the relevant Delau-

nay tetrahedra and integration of the (linearly) running field val-

ues within the intersection. Subsequently the integrands of each

Delaunay intersection are added and averaged over the grid-cell

volume.

– Monte Carlo approach
Approximate the integral by taking the average over a number of

(interpolated) field values probed at randomly distributed locations

within the grid cell around an image point. Finally, average over the

obtained field values within a grid cell.

– Singular interpolation approach
A reasonable and usually satisfactory alternative to the formal ge-

ometric or Monte Carlo approach is the shortcut to limit the field

value calculation to that at the (grid) location of the image point. This

offers a reasonable approximation for grid cells which are smaller or

comparable to that of intersecting Delaunay cells, on the condition

the field gradient within the cell(s) is not too large.

Smoothing and filtering
Linear filtering of the field f̂ : Convolution of the field f̂ with a

filter function Ws(x, y), usually user specified,

fs(x) =
∫

f̂ (x′) Ws(x′, y) dx′. (5)

Post-processing
The real potential of DTFE fields may be found in sophisticated

applications, tuned towards uncovering characteristics of the recon-

structed fields. An important aspect of this involves the analysis of

structures in the density field. Some notable examples are:

– Advanced filtering operations. Potentially interesting applica-

tions are those based on the use of wavelets (Martı́nez et al. 2005).

– Cluster, filament and wall detection by means of the multiscale
morphology filter (Aragon et al. 2007).

– Void identification on the basis of the cosmic watershed algo-

rithm (Platen, van de Weygaert & Jones 2007).

– Halo detection in N-body simulations (Neyrinck et al. 2005).

– The computation of 2D surface densities for the study of grav-

itational lensing (Bradac et al. 2004).

In addition, DTFE enables the simultaneous and combined analy-

sis of density fields and other relevant physical fields. As it allows

the simultaneous determination of density and velocity fields, it can

serve as the basis for studies of the dynamics of structure formation

in the cosmos. Its ability to detect substructure as well as repro-

duce the morphology of cosmic features and objects implies DTFE

to be suited for assessing their dynamics without having to invoke

artificial filters.

– DTFE as basis for the study of the full phase-space structure

of structures and objects. The phase-space structure dark haloes

in cosmological structure formation scenarios has been studied by

Arad et al. (2004).

Figure 2. The (mean) PSCz intergalaxy distance as a function of distance

(to the Local Group), an expression of the diminishing sampling density in

the flux-limited PSCz sample.

4 P S C z: TOWA R D S T H E D T F E D E N S I T Y A N D
V E L O C I T Y F I E L D S

Given the determination of the positions and velocities of the PSCz
galaxies in our sample by the linearization procedure of Branchini

et al. (1999), the continuous volume-weighted DTFE density and

velocity fields – and the corresponding velocity divergence and shear

field – throughout the sample volume is computed following the

steps outlined in Section 3.6.

In our study we analyse and assess the DTFE density and ve-

locity maps within an inner region of radius 120 h−1 Mpc. It allows

a more than qualitative comparison with the analysis of Branchini

et al. (1999) and Schmoldt et al. (1999). Out to this radius the sam-

ple contains 10 651 galaxies. To include a sufficiently large region

enclosing the main sources gravitationally contributing to the ve-

locity field in the inner 120 h−1 Mpc we make use of the data within

a spherical volume of radius 180 h−1 Mpc (Branchini et al. 1999;

Romano-Dı́az 2004). Out to this radius the PSCz sample still has

sufficient structure resolution, without shot-noise becoming domi-

nant. The number of galaxies in this ‘PSCz-source’ sample out to

this radius is 13 432.

An important factor to take into account in the interpretation

and analysis of the resulting DTFE field maps is the fact that the

intergalaxy separation is an increasing function of distance. For the

PSCz sample it rises from near ≈2 h−1 Mpc within a radius from

20 to ≈14 h−1 Mpc at the outer radius of 120 h−1 Mpc (see Fig. 2).

As a result the Delaunay tessellation polyhedra will gradually grow

in volume as a function of distance. Because it are the polyhedral

cells which set the local resolution of the interpolated fields we

need to take into account that the pure DTFE reconstruction maps

have a diminishing resolution towards larger distances. This makes

post-processing a necessity step for a quantitative analysis and/or

for an objective assessment of the resulting density and velocity

fields.

4.1 PSCz: the Delaunay map

The spatial positions and peculiar velocities of the galaxies in the

processed PSCz sample are depicted in the left-hand panel of Fig. 3.

The figure shows the galaxies within a slice of 2.5 h−1 Mpc thickness

centred along the Z-supergalactic plane. The Local Group is located
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10 E. Romano-Dı́az and R. van de Weygaert

Figure 3. Modelled peculiar velocity field at the galaxy positions (left-hand panel). The plot represents a slice of 2.5 h−1 Mpc thickness centred along the

Z-supergalactic plane. Numbers indicate the major visible structures along the section. 1 – Local Supercluster, 2 – GA region, 3 – Pavo–Indus–Telescopium

complex, 4 – Shapley supercluster, 5 – Coma cluster, 6 – Camelopardalis cluster, 7 – Pisces–Perseus supercluster, 8 – Cetus wall, 9 – Sculptor void. (From

Branchini et al. 1999). The right-hand panel shows the corresponding Delaunay tessellation of the galaxy distribution. The shadowed regions illustrate the

‘contiguous Voronoi cell’ concept for two galaxies, marked P1 and P2.

at the origin. Velocity vectors, indicating the velocity component

within the supergalactic plane, are plotted at the galaxy positions.

The size of the velocity vectors is normalized with respect to the

maximum velocity amplitude within the slice. In the map the main

large-scale structures have been labelled. For a description of these

we refer to Section 5.1.

For reference the right-hand frame depicts the Delaunay trian-

gulation defined by the projected positions of the sample galaxies

within the 2.5 h−1 Mpc thick slice around supergalactic plane. By

showing the meticulous spatial adaptivity of the Delaunay tessel-

lation, it forms a good illustration of the rationale behind using

it as an estimate for local density. The figure emphasizes this by

means of the two grey areas, the contiguous Voronoi cells surround-

ing a sample point. The inverse of these form the DTFE method’s

local density estimate (see equation 1). The figure also provides

a good impression of the corresponding non-uniform spatial res-

olution of the Delaunay interpolation grid. The spatial resolution

of the DTFE interpolation grid follows the density of the sample

points.

4.2 PSCz: the DTFE interpolation

Once the spatial position rn and velocity vn of each galaxy n in our

PSCz sample has been determined, DTFE will be applied towards

reconstructing density and velocity fields throughout the sample

volume.

4.2.1 PSCz DTFE density values

Evidently, the calculation of the Delaunay tessellation needs to be

done only once, for both the density and velocity fields. While the

velocity valuesvn at the locations rn are part of the input information,

the density values are estimated from the volume V (W)n of the

surrounding contiguous Voronoi cell Wn around each cell n (see

Fig. 3). For the 3D density maps of the magnitude-limited PSCz

survey we have the density estimates (Schaap & van de Weygaert

2000)

ρ̂(xn) = 4

ψPSCz(xn) V (Wn)
. (6)

For the PSCz radial selection function ψPSCz we used the expression

described in Branchini et al. (1999).

4.2.2 DTFE density and velocity gradients

The value of the density and velocity field gradient in each Delaunay

tetrahedron is directly and uniquely determined from the location

r = (x, y, z) of the four points forming the Delaunay tetra-

hedron’s vertices, r 0, r 1, r 2 and r 3, and the value of the esti-

mated density and sampled velocities at each of these locations,

(ρ̂0,v0), (ρ̂1,v1), (ρ̂2,v2) and (ρ̂3,v3),(
∇̂ρ|m
∇̂v|m

)
⇐=

⎧⎪⎨⎪⎩
ρ̂0 ρ̂1 ρ̂2 ρ̂3

v0 v1 v2 v3

r 0 r 1 r 2 r 3

(7)

The four vertices of the Delaunay tetrahedron are both necessary and

sufficient for computing the entire 3 × 3 velocity gradient tensor

∂vi/∂xj . Evidently, the same holds for the density gradient ∂ρ/∂xj .

We define the matrix A is defined on the basis of the vertex distances

(
xn , 
yn , 
zn) (n = 1,2,3),

⎛⎝
xn = xn − x0


yn = yn − y0


zn = zn − z0

⎞⎠ =⇒ A =

⎛⎜⎜⎜⎝

x1 
y1 
z1


x2 
y2 
z2


x3 
y3 
z3

⎞⎟⎟⎟⎠ . (8)

Similarly defining 
vn ≡vn −v0(n = 1, 2, 3) and 
 ρn ≡ ρn − ρ0

(n = 1, 2, 3) it is straightforward to compute directly and simultane-

ously the density field gradient ∇ ρ|m and the velocity field gradient
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Figure 4. 3D reconstructed DTFE PSCz density field. The field has been smoothed with a Gaussian kernel of 5 h−1 Mpc (for the effective smoothing scale see

text, Section 4.2.3). The isosurface represents structures at three times the smoothed the mean density. Note the two huge density concentrations around the

Z = 0 plane, the Pisces–Perseus and Cetus wall complex to the right-hand side, and the Hydra–Centaurus and Pavo–Indus–Telescopium to the left-hand side.

A well-delineated bridge connects both structures, the Local Supercluster. For feature identity see the numbers in Fig. 3.

∇v |m = ∂ vi/∂ xj in Delaunay tetrahedron m via the inversion⎛⎜⎜⎜⎝
∂ρ
∂x
∂ρ
∂y
∂ρ
∂z

⎞⎟⎟⎟⎠ = A−1

⎛⎝
ρ1


ρ2


ρ3

⎞⎠ ;

⎛⎜⎜⎜⎝
∂vx
∂x

∂vy

∂x
∂vz
∂x

∂vx
∂y

∂vy

∂y
∂vz
∂y

∂vx
∂z

∂vy

∂z
∂vz
∂z

⎞⎟⎟⎟⎠ = A−1

⎛⎜⎝
v1x 
v1y 
v1z


v2x 
v2y 
v2z


v3x 
v3y 
v3z

⎞⎟⎠ .

(9)

4.2.3 DTFE: velocity field constraints

DTFE interpolation of velocity field values is only feasible in regions

devoid of multistream flows. As soon as there are multiple flows

– notably in high-density cluster concentrations or in the highest

density realms of the filamentary and planar caustics in the cosmic

web – the method breaks down and cannot be applied.

In the study presented here this is particularly so in high-density

clusters. The complication can be circumvented by filtering the ve-

locities over a sufficiently large region, imposing an additional res-

olution constraint on the DTFE velocity field. Implicitly this has ac-

tually already been accomplished in the linearization procedure of

the velocity fields preceding the DTFE processing (see Section 2).

The linearization of the input velocities involves a kernel size of

√
5 h−1 Mpc2 for the inner 50 h−1 Mpc, for larger distances it grad-

ually increases with the intergalaxy distance l(r) as l(r )/
√

5 h−1 Mpc

(for the PSCz intergalaxy distance see Fig. 2). As a result, the res-

olution of the velocity field is set to a lower limit of
√

5 h−1 Mpc.

This is sufficient to assure the viability of the DTFE velocity field

reconstructions.

5 P S C z: T H E D T F E D E N S I T Y F I E L D

To appreciate the power of the DTFE method, the 3D map of the

DTFE density field in Fig. 4 provides a telling illustration. For con-

sistency between density field and the velocity field, the density

field has been smoothed with a Gaussian kernel of
√

5 h−1 Mpc.

Note that for r � 50 h−1 Mpc the resolution of both density and

velocity fields increases proportional to the intergalaxy distance

l(r): while the velocity field linearization procedure of Branchini

et al. (1999) explicitly involves this as effective smoothing radius

the DTFE adaptive grid resolution automatically scales accordingly

(see Section 7.1). The depicted isosurface level corresponds to struc-

tures at three times the smoothed mean density. On these scales most

outstanding features correspond to supercluster or void regions of

the cosmic web.3

Many familiar features are concentrated near the Z-supergalactic

plane of the 3D density field. For identification of the various

2 We have used the fact that RG = RTH/
√

5 (Suto & Fujita 1990).
3 Note that here, and throughout this study, the density field δ is in effect

the galaxy density field δg. It may be a biased reflection of the true matter

density field δm, here parametrized by a linear bias factor b.
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Figure 5. DTFE density and velocity fields projected along the Z-supergalactic plane in a thin slice. The colour bar indicates the plotted density scale. The

density and velocity fields have an effective Gaussian smoothing radius of RG ∼ max
√

5, l(r )
√

5 h−1 Mpc, with l(r) the intergalaxy separation distance.

Density values are scaled according to the bar at the bottom of the frame, while the velocity vectors are scaled such that the (black) velocity vector at the bottom

left-hand side corresponds to 650 km s−1.

features we show the density field in this plane by means of the

contour colour map in Fig. 5. The amplitude of the corresponding

density values can be inferred from the colour bar below the map.

The superimposed arrows indicate the corresponding DTFE recon-

structed velocities within the supergalactic plane (see Section 6).

It is interesting to compare the density map in Fig. 5 with the

map in fig. 5 of Branchini et al. (1999). This also involves a density

field, of the same PSCz volume, smoothed with a Gaussian filter

with a smoothing scale which spatially adapts itself to the local

(galaxy) density. While it shares the superb spatial resolution with

the DTFE map, the imprint of the underlying (spherical) Gaussian

filter is particularly visible in the boundary regions of voids and

superclusters. The work by Schaap & van de Weygaert (2007) shows

that its lack of geometric adaptivtiy causes structural artefacts near

boundaries of low-density voids and anisotropic filaments.

5.1 The DTFE density field: cosmography

The Local Group is located at the origin of the maps in Figs 3 and 4

and in Fig. 5, it is embedded in the surrounding Local Supercluster

region. On the basis of their gravitational influence on the surround-

ings, manifest in the corresponding velocity field, most of the main

large-scale structures can be easily recognized in Fig. 3. For the pur-

pose of guidance and identification we have inserted labels in the

map of the supergalactic plane galaxy positions in Fig. 3, indicating

the various large-scale structures in our neighbourhood.

High-density regions (reddish regions) as well as low-density

ones (dark zones) can be easily recognized along the isodensity map

in Fig. 4. One of the immediate observations is that the high-density

regions, particularly the highly resolved one in the inner region of

the 3D map, tend to be flattened or elongated, a direct consequence
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Figure 6. Density and velocity PDFs for PSCz. In the top row the PDFs are plotted in lin–lin, in the bottom row in lin–log. The lin–lin plots emphasize the

level of non-Gaussianity of the density and velocity fields. The lin–log plot emphasizes prominent features in the distribution, in particular the sharply defined

low-density edge, and facilitates comparison between the velocity divergence PDF and the density PDF. Left-hand panels: PDF of the DTFE density field (solid

line). For comparison we have included the density PDF from of Branchini et al. (2002, dashed line). Right-hand panels: the PDF of the velocity divergence

(see Section 9). The DTFE velocity divergence distribution is indicated by means of diamonds, the Branchini et al. (1999) one as triangles (only in the lin–log

plot) as triangles. Note the good mirror image correspondence between the density and velocity divergence plot for the DTFE fields (both lin–lin and lin–log).

of the DTFE ability to trace and reproduce the natural shape and

anisotropy of structural features.

Two major matter concentrations along the Z = 0 plane dom-

inate the field (Fig. 5). The complex formed by the Pavo–Indus–

Telescopium supercluster and the Hydra–Centaurus supercluster

with its extension towards the Shapley concentration dominates

the left-hand region of the supergalactic plane (the orientation of

the figure is such that the Pavo–Indus–Telescopium supercluster, at

[SGX, SGY] ≈ [−40, −10] h−1 Mpc, is visible at the front left-hand

side in the 3D image). Towards the other direction of the Local Su-

percluster we find a similar outstanding mass concentration. Cen-

trally located is the Pisces–Perseus supercluster, extending out in

the Cetus wall to the south and the Camelopardalis cluster towards

the north. The Pisces–Perseus supercluster, clearly visible at [SGX,

SGY] ≈ [45, −20] h−1 Mpc, and the Cetus wall, at [SGX, SGY] ≈
[20, −40] h−1 Mpc and connecting with the barely visible Sculp-

tor wall at [SGX, SGY] ≈ [0, −80] h−1 Mpc, overshadow the other

structures. The massive matter concentrations on either side of the

Local Supercluster are connected by a thin filamentary bridge, pass-

ing near the origin of the map and outlining the Local Supercluster.

The filament runs from the Camelopardalis cluster ([SGX, SGY] ≈
[45, 20] h−1 Mpc) towards the Shapley supercluster ([SGX, SGY] ≈
[−120, 70] h−1 Mpc) and connects the Local Supercluster with the

Hydra–Centaurus supercluster.

The Hydra–Centaurus supercluster, connecting with the Local

Supercluster on the north-west side, may be largely identified with

the Great Attractor (GA) region. Also the Shapley concentration,

further out along the north-west axis, may be a major contributor to

the velocity flows in the Local Supercluster. This can be inferred

from Fig. 3, which shows that the modelled linearized velocity

field does not show any evidence for a backflow into the GA re-

gion (e.g. Basilakos & Plionis 1998; Plionis & Kolokotronis 1998;

Branchini et al. 1999; Rowan-Robinson et al. 2000). It might be

the result of a mere artefact of the reconstruction procedure while

it did reveal itself in the map computed by means of the alternative

procedure of Schmoldt et al. (1999). Recent studies of the dipole

in the X-ray cluster distribution (Kocevski & Ebeling 2006) do in-

deed provide ample influence for a major dynamical influence of

the Shapley concentration, be it that the more localized Two Micron

All Sky Survey sample appears to suggest that the tug of the GA re-

mains the overriding influence for the Local Supercluster (Erdoğdu

et al 2006).

The GA complex and its extension towards the Shapley config-

uration, the Local Supercluster and the Pisces–Perseus complex do

define a dynamical axis of a suggestive quadrupolar configuration.

The tug of war between the GA and the Pisces–Perseus will be

expressed in terms of a strong compressional tidal force perpendic-

ular to the axis, responsible for the filamentary geometry and the

strong velocity shear near the Local Supercluster (Lilje, Yahil &

Jones 1986), (also see van de Weygaert & Bertschinger 1996). In

all, the map of Fig. 4 forms a wonderful illustration of the theoretical

framework of the cosmic web by Bond et al. (1996), in which the

large-scale tidal field is the web-shaping agent.

Perpendicular to the dynamical axis defined by the GA complex,

Local Supercluster and the Pisces–Perseus complex, the most out-

standing feature in our local cosmic neighbourhood is the Coma
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cluster. It is visible as the only major concentration at the top of

the map, at [SGX, SGY] ≈ [0, 70] h−1 Mpc, embedded within the

Coma wall of which the maps also allow a glimpse.

Also highly interesting are the voids visible in the DTFE den-

sity map in the local Universe. These can be readily identified from

the 3D map of Fig. 4 – and even better from its underdense mir-

ror image – as large empty (and in general roundish) regions. The

Sculptor void, surrounded by the Pavo–Indus–Telescopium com-

plex and the Sculptor and Cetus walls, is one of the most salient

empty features along the supergalactic plane. Its impact on the sur-

rounding velocity field can be easily recognized (see Fig. 3). The

Fornax void is located just at the bottom of the plot ([SGX, SGY] ≈
[10, −110] h−1 Mpc). Also the small void located between the Coma

cluster and the Hydra–Centaurus region is clearly delineated.

5.2 The DTFE density field: probability distribution function

Its ability to resolve small- and large-scale structure without loss

of spatial resolution and the ability to meaningfully interpolate the

density field in poorly sampled void regions allows DTFE to re-

cover the density probability distribution function (PDF), including

both the low- and high-density ends of the PDF. Fig. 6 shows the

resulting distribution function: the solid lines in the left-hand frames

(top: lin–lin, bottom: lin–log) show the PDF of the DTFE density

field. The intimate connection with the PDF of the corresponding

velocity divergence distribution will be discussed in Section 9.4.

By assessing the PDF of the density and flow field restricted to the

inner 50 h−1 Mpc of the PSCz volume and observing it to be largely

in agreement with that for the full sample seen here we reassured

ourselves that effects resulting from the heterogeneous spatial res-

olution (see Section 7.1) do not substantially affect our results.

On the positive side of the PDF DTFE manages to trace the dis-

tribution function down to PDF values of 10−3, on the negative side

down to even lower values. One direct observation is that the DTFE

PDF does not go down to density values of −1. The lin–lin plot in

the left-hand frame nicely shows the mild non-Gaussian character of

the density field, entirely according to expectation. The lin–log plot

emphasizes the meticulous rendering of the low-density regions: on

the low-density side there is a sharp cut-off at a density threshold of

δ = −0.8, interestingly close to the density of a spherically symmet-

ric shell-crossing void in an Einstein–de Sitter (EdS) universe.4 It

forms a powerful confirmation of the power of DTFE to reconstruct

the density distribution in void regions.

It is particularly informative to compare the DTFE density PDF

with that of the linear density field reconstruction from Branchini

et al. (1999), who used a rigid grid-based interpolation scheme (CIC;

Hockney & Eastwood 1988). The dashed lines in the lin–lin and lin–

log diagrams in Fig. 6 are the corresponding PDFs. Several telling

differences between the DTFE and PSCz density maps of Branchini

et al. (1999) can be identified. The grid-based reconstruction used by

the latter yields significantly lower density values in void regions,

in the order of δ ≈ −1. It is an expression of the inability of the

rigid grid-based interpolation to recover meaningful density values

as a result of the sparsity of sample points: when no points are

found within the grid kernel, the method yields a zero-density value.

On the side of the high-density values we see that DTFE recovers

systematically higher density values. This is a consequence of the

4 The theoretical expectation for a mature and shell-crossing void, with a

characteristic inverse top-hat density profile, is an underdensity of 
 ≈−1 +
(1/1.7)3 ≈ − 0.8.

DTFE ability to trace the density field into the most compact and/or

highest density regions, without smearing these region out as in

the case of rigid kernel procedures. One may of course argue that

it would be more appropriate to compare the DTFE results with

a correspondingly smoothed CIC field. However, here we seek to

highlight the fact that DTFE does not need any such user-specified

tuning and does achieve the required filtering automatically.

6 P S C z: T H E D T F E C O S M I C F L OW F I E L D

The DTFE reconstruction of the continuous volume-weighted

DTFE velocity field of the PSCz catalogue proceeded along the

steps outlined in Section 3.6. Because the input velocities have

been linearized prior to the DTFE processing there is an implicit

limit on the resolution of the reconstructed flow field rendering

additional smoothing unnecessary. It also means that one cannot

recover features in the flow field on a scale smaller than the kernel

size (
√

5 h−1 Mpc for r � 50 h−1 Mpc, ∝ l(r )/
√

5h−1 Mpc for

r � 50 h−1 Mpc).

6.0.1 The supergalactic plane

Fig. 5 presents the resulting velocity field by means of the projected

velocity vectors within the Z-supergalactic plane, superposed upon

the corresponding DTFE density contour maps. The length of the

velocity arrows can be inferred from the arrow in the lower left-hand

corner, which corresponds to a velocity of 650 km s−1.

The processed DTFE velocity field reveals intricate details along

the whole volume. The first impression is that of the meticulously

detailed DTFE flow field, marked by sharply and clearly defined

flow regions over the whole supergalactic plane. Large-scale bulk

flows, distorted flow patterns such as shear, expansion and contrac-

tion modes of the velocity field are clear features uncovered by our

DTFE technique. DTFE recovers clearly outlined patches marked

by strong bulk flows, regions with characteristic shear flow patterns

around anisotropically shaped supercluster complexes, radial in-

flow towards a few massive clusters and, perhaps most outstanding,

strong radial outflows from the underdense void regions.

The map of Fig. 5 shows the success of DTFE in converting

a sample of discretely sampled velocities into a sensible volume-

covering flow field. In particular its ability to interpolate over the

low-density and thus sparsely sampled regions is striking: the voids

show up as regions marked by a near-spherical outflow. By contrast,

more conventional schemes, such as TSC or SPH (see Romano-Dı́az

2004; Schaap & van de Weygaert 2007), meet substantial problems

in defining a sensible field reconstruction in low-density regions

without excessive smoothing and thus loss of resolution. At the

same time, the local nature of the DTFE interpolation guarantees a

highly resolved flow field in high-density regions.

Overall, there is a tight correspondence with the large-scale struc-

tures in the underlying density distribution. While the density field

shows features down to a scale of
√

5 h−1 Mpc (within the inner

50 h−1 Mpc), the patterns in the flow field clearly have a substan-

tially larger coherence scale, nearly all in excess of 10 h−1 Mpc. Of

course, a strong correlation between density and velocity fields is

to be expected given the artificial origin of the sample velocities as

they were generated from the galaxy redshift distribution through

the linearization procedure. Strictly speaking this concerns linear

features, although it is interesting to see that the correspondence re-

mains almost unanimous for mild non-linear supercluster and void

region. The DTFE velocity flow sharply follows the elongated ridge
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Figure 7. PDFs for the three Cartesian velocity components and velocity amplitude. The red PDFs correspond to those computed by means of the DTFE

technique. The blue PDFs are those from Branchini et al. (1999).

of the Pisces–Perseus supercluster. In addition we find the DTFE

velocity field to contain markedly sharp transition regions between

void expansion and the flows along the body of a supercluster. We

should bear in mind that this mainly concerns the outline of features

in the velocity flow, the corresponding velocity values remain linear

in character. The latter is an artefact of the (artificial) linearization

origin of the galaxy velocities in our sample.

Massive bulk motions are particularly concentrated near and

around the massive structure extending from the Local Supercluster

(centre map) towards the GA region and the Shapley concentration.

The DTFE map nicely renders this pronounced bulk flow towards

the Hydra–Centaurus region and shows that it dominates the gen-

eral motions at our Local Group and Local Supercluster. The most

massive and coherent bulk flows in the supergalactic plane appear

to be connected to the Sculptor void and the connected void regions

(towards the left-hand side of the figure). They are the manifes-

tation of the combination of gravitational attraction by the heavy

matter concentration of the Pavo–Indus–Telescopium complex, the

more distant ‘Hydra–Centaurus–Shapley ridge’, and the effective

push by the Sculptor void region. Conspicuous shear flows can be

recognized along the ridge defined by the Cetus wall towards the

Pisces–Perseus supercluster ([SGX, SGY] ≈ [20, −40] h−1 Mpc).

A similar strong shear flow is seen along the extension of the Hydra–

Centaurus supercluster towards the Shapley concentration.

The influence of the Coma cluster is beautifully outlined by the

strong and near perfect radial infall of the surrounding matter, visible

at the top centre of Fig. 5. Also the velocity field near the Perseus

cluster, in the Pisces–Perseus supercluster region, does contain a

strong radial inflow component.

Perhaps most outstanding are the radial outflow patterns in and

around voids. The intrinsic suppression of shot-noise effects through

the adaptive spatial interpolation procedure of DTFE highlights

these important components of the Mpc flow field and emphasizes

the dynamical role of voids in organizing the matter distribution of

the large-scale cosmic web.

6.1 Velocity field: probability distribution function

We have also compared the PDFs of the Cartesian velocity com-

ponents and the total velocity amplitude. The red PDFs in Fig. 7

represent those computed by means of the DTFE technique, while

the blue ones are those from Branchini et al. (1999).

The DTFE velocity PDFs have a healthy Gaussian appearance,

as we might have expected for a near linear velocity field. In this re-

spect it is interesting to note the stark differences between the DTFE

distribution functions and those of the velocity field of Branchini

et al. (1999). In particular the velocity component in the x direction

shows a marked deviation. We traced the differences back to the

low-density regions, where rigid grid-based methods have consid-

erable difficulty in defining reasonable density values. On the other

hand we also note significant differences in the high-density regions.

Grid-based methods are unable to resolve these and tend to average

the velocities in these regions over the volume of a grid cell. This is

reflected in the PDF of the velocity amplitude: the DTFE PDF testi-

fies considerably higher velocities in the DTFE velocity field. Note

that this may yield important implications for the analysis of large-

scale bulk flows within the sample’s volume; conventional methods

may yield unjustifiably biased values.

6.1.1 The spatial flow field

It remains a rather challenging task to visualize a 3D flow field. We

chose to show the spatial structure of the DTFE rendered velocity

flow within the PSCz volume within the three mutually perpendic-

ular central slices through the centre of the supergalactic plane (i.e.

the Local Group’s location). The combination of the velocity flow

within the 2.5 h−1 Mpc thick slices along the XY, the XZ and the YZ
supergalactic plane provides a reasonable impression of the spatial

flow field. To understand its connection with the underlying matter

distribution we also depict the density distribution within the same

planes.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 2–28



16 E. Romano-Dı́az and R. van de Weygaert

To appreciate the structure of the PSCz velocity flow and to obtain

an impression of the density and velocity field contributions on

different scales we have included the complementary set of maps

in Figs 8 and 9. By means of a set of 3 × 2 frames, the latter

shows the density and velocity fields are filtered on a scale of RG =
12 h−1 Mpc, the former on RG = 3.8 h−1 Mpc. The density field in

the XY, XZ and YZ central slices is represented by grey-scale maps

in three consecutive rows of the left-hand column, the grey-scale

values in all three frames are scaled according to the values in the bar

atop the figure. The corresponding velocity vector maps are shown

in the right-hand column. The velocity vectors in the three planes

are normalized such that the reference velocity vector depicted atop

the three frames corresponds to 650 km s−1. The view on a scale

of RG = 12 h−1 Mpc is that of the large-scale (linear) contributions

to the flow field and identifies the agents of these large-scale flows.

The considerably more detailed map of Fig. 8 has the intention of

identifying the imprint of mild non-linear structural features such

as superclusters and voids on the corresponding velocity flow.

The combination of Figs 8 and 9 is a potentially rich source for the

study of the structural dynamics in the local Universe. Important for

the present study is that it emphasizes three key issues of the DTFE

velocity field analysis.

(i) The spatial adaptivity of DTFE allows the resolution of the

velocity flow in and around non-linear features in the density field.

(ii) The spatial adaptivity of the DTFE kernel to the density of

sample points implies a dependence of the spatial resolution of the

(raw) DTFE velocity field on the sampling density. As a result high-

resolution maps do involve a rather inheterogeneous spatial resolu-

tion over the sample volume.

(iii) The DTFE velocity field has a more homogeneous resolution

than the corresponding density field. This is a result of the larger

scale character of cosmic velocity fields.

7 D T F E M A P S : S PAT I A L R E S O L U T I O N

The cosmic matter distribution and cosmic velocity flows include

contributions over a wide range of scales. One of the virtues of DTFE

is its large dynamic range, a result of its adaptivity (see Schaap &

van de Weygaert 2007). In principle we are therefore equipped for an

assessment of the structure of the produced DTFE PSCz density and

velocity maps in terms of their structure at various scales. However,

before doing so we need to pay attention to the fact that for the

flux-limited sample the DTFE maps do not necessarily involve a

homogeneous resolution.

7.1 Heterogeneous versus homogeneous resolution

The cosmographical presentation of the pure DTFE density and

velocity maps in Fig. 5 in Section 5.1 does not include the issue of

its rather non-uniform, radially declining, spatial resolution. This

issue becomes prominent in the comparison between the maps of

Fig. 9 and those of Fig. 8. While the latter have a uniform but low

spatial resolution of RG = 12 h−1 Mpc, the higher resolution maps

filtered on a scale RG = 3.8 h−1 Mpc do lack such uniform resolution.

By its nature, DTFE resolves regions of a higher sampling den-

sity on a finer scale, as can be readily inferred from the structure

of the Delaunay grid in Fig. 3. As a result the spatial resolution

diminishes when the intergalaxy separation in the sample increases.

The increase of the PSCz intergalaxy separations as a function of

distance (Fig. 2) thus provides an order-of-magnitude estimate of

the effective resolution scale as function of radial distance from the

Local Group.5

A resolution scale of RG ∼ 3.8 h−1 Mpc corresponds to a radial

depth of ∼30 h−1 Mpc while RG ∼ 12 h−1 Mpc is reached at a dis-

tance of 120 h−1 Mpc. By implication the maps in Fig. 8 are uniform

in the inner 30 h−1 Mpc, but they are marked by a gradually dimin-

ishing spatial resolution at larger distances. These are in particular

the density maps which show the gradually fading resolution of the

3.8 h−1 Mpc maps most clearly. By contrast, the RG = 12 h−1 Mpc

maps show a uniformly resolved view of the structure and flow in

the local Universe. A scale of RG = 12 h−1 Mpc corresponds to the

sample intergalaxy distance at the outer edge of the PSCz sample.

For a proper quantitative analysis and assessment of the DTFE

density and velocity field reconstructions it is of the utmost impor-

tance to take into account the gradually diminishing spatial reso-

lution of the raw DTFE maps. In this respect we also need to take

into account that cosmic density and velocity fields are composed

of contributions from a range of scales. By implicitly filtering out

small-scale contributions in regions with a lower sampling density

DTFE will include a smaller range of spatial scales contributing to

a field reconstruction. On average, they will therefore correspond to

regions with a lower amplitude, a subtle point of importance in any

quantitative analysis. A comparison of DTFE density and velocity

maps in the PSCz volume shows that the latter seems to be hardly

affected by this effect, a manifestation of the fact that the cosmic

velocity field is dominated by larger scale modes than the density

field (Peebles 1980).

7.1.1 The large-scale local Universe: the 12 h−1 Mpc maps

In the large-scale RG = 12 h−1 Mpc density and velocity fields of

Fig. 9 we recognize nearly all features of the previous discussion

on the structure of the supergalactic plane (Section 5.1). The XY
supergalactic plane clearly involves a local matter concentration:

while the XY plane represents a more or less even distribution of

in particular high-density features, we observe a concentration of

high-density regions towards the corresponding Z = 0 axis in the

XZ density map and a more moderate density distribution with some

occasional high-density patches in the YZ map. One of the most

conspicuous mass concentrations in the latter is the Coma cluster, at

around [SGY, SGZ] ≈ [70, 0] h−1 Mpc, embedded within a massive

‘Great Wall’ complex extending along the Z-axis. It clearly empha-

sizes the moderate density values near our own Local Supercluster,

lying in between the massive Hydra–Centaurus–Shapley concen-

tration and the Pisces–Perseus concentration in the XY plane. The

only massive feature which had not been traced in the XY map is the

concentration near [SGY, SGZ] ≈ [−40, −100] h−1 Mpc.

The presence of massive matter concentrations in the RG =
12 h−1 Mpc map induces strongly correlated patterns in the flow

field. The XZ map is dominated by a strong and rather coherent

flow towards the Z = 0 (XY) supergalactic plane. Interesting is to

see that this flow is tied in with an almost equally prominent out-

flow from the low-density regions towards the upper right-hand side

of the maps. A similar pattern can be recognized in the YZ map,

where near the centre we observe an equally massive flow towards

the supergalactic Z = 0 plane. It appears to be coupled to a truly

massive radial outflow from the underdensity near [SGY, SGZ] ≈
[0, 80] h−1 Mpc. If anything, this demonstrates the key role of

5 Note that the resolution scale is not exactly a function of radial distance,

it is entirely determined by the local sampling density. On average this does

increase as function of radial distance. See Fig. 3.
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Figure 8. The DTFE density (left-hand column) and velocity vector (right-hand column) maps of the PSCz sample in three mutually perpendicular central

supergalactic planes: the XY, XZ and YZ planes (from top to bottom). The density and velocity fields are smoothed on a scale of 3.8 h−1 Mpc. This implies

a uniform resolution up to a radius of 30 h−1 Mpc around the centre, with a gradually diminishing resolution towards the outer edge of the sample volume.

The grey-scale bar at the top left-hand side indicates the density values. The velocity vectors are scaled such that the vector atop the figure corresponds to

650 km s−1.
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Figure 9. The DTFE density (left-hand column) and velocity vector (right-hand column) maps in three mutually perpendicular central supergalactic planes:

the XY, XZ and YZ planes (from top to bottom). The density and velocity fields are smoothed on a scale of 12 h−1 Mpc, involving a uniform resolution over

the sample volume. The grey-scale bar at the top left-hand side indicates the density values. The velocity vectors are scaled such that the vector atop the figure

corresponds to 650 km s−1.
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low-density regions in the dynamics of the local Universe, and in

the formation of cosmic structure in general.

Within the XY supergalactic plane we recognize the familiar flow

patterns discussed in Section 5.1 – the coherent bulk flow along the

Local Supercluster–Centaurus–Shapley axis. It is coupled to coher-

ent towards the Pisces–Perseus region, via a saddle point near the

Local Group location: the dominant shear flow in the local Universe.

Radial outflow low-density regions are somewhat less prominent;

the outflow from the local Sculptor void appears to be merged into

a large-scale coherent bulk flow.

7.1.2 Flow field scale dependence: 3.8 h−1 Mpc versus
12.0 h−1 Mpc

The impact of DTFE is particularly emphasized by the comparison

of the medium-resolution 3.8 h−1 Mpc maps and the 12.0 h−1 Mpc

maps. The more detailed density map of the maps in Fig. 8 reveals

considerably more detail in both density and velocity maps.

The structure in the XY density map has already been discussed in

detail in Section 5.1. For the RG = 3.8 h−1 Mpc density there are two

major points of importance in comparison to the RG = 12 h−1 Mpc

maps. The first is the gradually decreasing density values towards

the outer regions: most prominent features are concentrated within

the inner 30−40 h−1 Mpc radius. This is a direct consequence of the

decreasing spatial resolution of the non-uniform RG = 3.8 h−1 Mpc

maps (see Section 7). Another feature of interest is the more promi-

nent presence of (deeper) void regions with respect to the corre-

sponding RG = 12 h−1 Mpc map. This is in particular true for the

YZ plane.

The RG = 3.8 h−1 Mpc velocity field stands out by considerably

more sharply defined and outlined features. All features that were

recognized in the RG = 12 h−1 Mpc velocity field can also be identi-

fied, be it they are much more sharply defined. Moreover, all over the

volume these sharp velocity features are clearly correlated with fea-

tures in the density field. The mild non-linear nature of supercluster

complexes is reflected in pronounced bulk and shear flows. In the

velocity map these often go along with remarkably sharply defined

transition regions where the flow changes abruptly as it encounters

a flow from another direction. Also void outflows appear to be much

more prominent than the weakly positive divergence regions in the

large-scale map. The DTFE void outflows have the appearance of

superhubble bubbles, and relate very well to the deep non-linear

potential wells of true voids (see Schaap & van de Weygaert, in

preparation). In addition, we can recognize small-scale non-linear

features that were not seen in the RG = 12 h−1 Mpc velocity map.

The radial infall towards Coma and the radial outflow out of the

Sculptor void are telling examples.

Both aspects strongly underline the ability of DTFE to trace ve-

locity flows into non-linear regions. This forms a strong argument

for DTFE’s potential in the analysis of the dynamics of mild non-

linear structures, such as filamentary or wall-shaped superclusters

and voids. The DTFE analysis of Virgo cold dark matter simulations

by Schaap & van de Weygaert (in preparation) does indeed pro-

vide quantitative evidence for this ability of DTFE. Only when the

non-linear evolution of a structure has proceeded towards a higher

non-linear stage, marked by multistream regions and shell-crossing

displacements, the linear interpolation scheme of DTFE will break

down.

8 I N D I V I D UA L C O S M I C S T RU C T U R E S

The ability of the DTFE method to resolve and identify both small-

and large-scale features, on the condition of being sufficiently sam-

pled, makes it into a highly promising basis for the development of

structure detection algorithms.

To illustrate the variety of structures that may be identified by

DTFE we zoom into four different regions of the DTFE PSCz map,

each of a different character. The four regions are the Local Su-

percluster, the Coma cluster, the Sculptor void and the Pisces–

Perseus and Cetus supercluster filament. The four corresponding

panels in Fig. 10 show the density field and corresponding velocity

field vectors. To ascertain optimal resolution the density field has

been smoothed with a Gaussian kernel of a mere 1 h−1 Mpc. It is

important to realize that as a result of the irregular spatial resolution

this does not necessarily mean that all structures of that size are

revealed. Note that the physical size of the corresponding panels

varies with the spatial extent of the depicted structure.

8.1 The Local Supercluster

The top left-hand panel shows the complex velocity field in and

around the Local Supercluster. The Virgo cluster is located just

above the Local Group. Particularly prominent is the presence of

the GA region and its dominant influence on the velocity field. At

the location of the Local Group ([SGY, SGZ] ≈ [0, 0] h−1 Mpc)

we find a large bulk flow, part of a large-scale shear flow towards

the GA region. The shear patterns is a result of the exerted gravita-

tional influence of the GA and Pisces–Perseus supercluster (e.g. see

Romano-Dı́az 2004).

8.2 The Pisces–Perseus supercluster

The bottom right-hand frame focuses on the Pisces–Perseus super-

cluster and the Cetus wall. The prominent flow along the Pisces–

Perseus chain towards the Cetus wall is a clear indication of the

dynamical connection between these two structures. Their gravi-

tational influence can be traced along the whole zoomed region.

The velocity field around the underdense region located at [SGX,

SGY] ≈ [45, −60] h−1 Mpc is strongly distorted by these two mas-

sive structures. Note the presence of the shear pattern near the top

left-hand corner, near the location of the Local Group.

8.3 The coma cluster

The top right-hand panel shows how the Coma cluster, embedded

within the Coma wall, distorts the velocity field in its surroundings.

The DTFE reconstruction clearly depicts the almost isotropic infall

into the Coma cluster. The slight offset is an artefact of our imple-

mentation of the DTFE interpolation towards the image grid loca-

tions. Coma is embedded within the Coma wall. The shear pattern

visible near the bottom left-hand side is the result of the opposing

forces between the Coma region and the Local Supercluster region.

8.4 The Sculptor void

The Sculptor void and surroundings is the subject of the bottom

left-hand frame. The lowest measured DTFE density contrast value

(smoothed at 1 h−1 Mpc) in this region is ≈ −0.78 at the deepest

of the void. At the smoothed scale of
√

5h−1 Mpc the DTFE den-

sity threshold is −0.74, in agreement with the reported value by

Plionis & Basilakos (2002) of −0.69. The velocity field of this

almost ‘empty’ expanding region is distorted by the surrounding

matter distribution. Small, yet detectable, distortions delineate the
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Local Supercluster

Sculptor void

Coma

Figure 10. Density and velocity zooms for four different regions along the supergalactic plane indicated by the labels at the top of each frame. The density

field has been convolved with a Gaussian kernel of 1 h−1 Mpc for a better impression of such field. Note that the density colour contour values in each of the

frames are chosen differently, their scaling reflected in the colour bars at the right-hand side of each frame. The velocity vectors at the top of each frame, at the

right-hand side of the frame’s name, correspond to a velocity of 650 km s−1.

boundary of this void with the surrounding matter distribution, i.e.

the Sculptor wall.

9 T H E D T F E P S C z V E L O C I T Y D I V E R G E N C E

A direct spin-off of the DTFE velocity field analysis is that it im-

plicitly comes along with the velocity field divergence, shear and

vorticity. In the outline of the DTFE method, in Section 3.6, we

described how the DTFE method determines the gradient ∇̂ f |m of

the sample field f in each Delaunay simplex m (equation 3). For the

three spatial components of the velocity field, (vx , vy , vz), this trans-

lates into a velocity gradient counting nine components ∂vi/∂xj

(equation 9). Within the context of DTFE each velocity gradient

∂vi/∂xj has a uniform value within each Delaunay tetrahedron. By

implication, the reconstructed DTFE velocity gradient field is not

continuous.

9.1 Velocity divergence, shear and vorticity

From the nine velocity gradient components ∂vi/∂xj we can di-

rectly determine the three velocity deformation modes, the velocity

divergence ∇ · v, the shear σ i j and the vorticity ω,

∇ · v =
(

∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z

)
,

σi j = 1

2

{
∂vi

∂x j
+ ∂v j

∂xi

}
− 1

3
(∇ · v) δi j ,

ωi j = 1

2

{
∂vi

∂x j
− ∂v j

∂xi

}
, (10)

whereω=∇ ×v= εki jωi j (and εki j is the completely antisymmetric

tensor). In the theory of gravitational instability, there will be no

vorticity contribution as long as there has not been shell crossing (i.e.

in the linear and mild non-linear regime). For the evolution of density

perturbations, the velocity divergence is an important velocity field

component from the early linear regime onward. As non-linearity

sets in the deforming character of accompanying shear flows become

increasingly decisive in shaping the cosmic matter distribution. It is

in particular via the Zel’dovich formalism (Zel’dovich 1970) and the

cosmic web theory by Bond and collaborators that we have come to
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Figure 11. Left-hand column: DTFE velocity divergence field, on a smoothing scale of RG = √
5h−1 Mpc projected along the Z-supergalactic plane. The

thin slice corresponds to the one presented in Fig. 5. The velocity divergence is in units of the Hubble parameter H0. The colour bar represents the scale of the

plotted velocity divergence. Right-hand column: The map, along the Z-supergalactic plane, of the difference between the DTFE velocity divergence field and

the linear theory prediction for the corresponding DTFE density field. The colour bar indicates the corresponding field values, in units of km s−1 Mpc−1.

appreciate the key role of tides and velocity shear in the formation of

the observed web-like Mpc matter distribution (Bond et al. 1996).

The relationship between the cosmic density field on one hand and

the velocity divergence and shear fields on the other hand contains

substantial information on the dynamics and formation of struc-

ture in the universe. Within the context of the corresponding DTFE

analysis it is important to realize that there is an important and im-

plicit discrepancy: the DTFE density and velocity fields are entirely

continuous. The velocity divergence fields consist of discontinuous

patches: the Delaunay tetrahedra, each with a constant value of ∇ ·v.

This renders a perfect one-to-one correspondence between the raw

DTFE density and ∇ · v fields is unfeasible. Filtering over the scale

of a Delaunay simplex is usually necessary to restore the physically

expected relations.

In the following subsections we present the maps of the velocity

divergence field and the velocity shear field in the same central

supergalactic planes as in Figs 5 and 8. By smoothing the velocity

divergence, velocity shear and vorticity fields with the Gaussian

kernel RG = √
5h−1 Mpc, akin to the density map in Figs 5 and 9,

we restore a sense of continuity to the resulting maps.

9.2 The DTFE velocity divergence map

The DTFE normalized velocity divergence estimate θ̂ is the sum of

the trace of the DTFE velocity-gradient components,

θ̂ ≡ ∇̂ · v
H0

= 1

H0

(
∂̂vx

∂x
+ ∂̂vy

∂y
+ ∂̂vz

∂z

)
, (11)

with H0 the Hubble constant.6 In Fig. 11 (left-hand column) we

have plotted θ̂ . Its full spatial structure at two different resolutions

is shown in Fig. 12.

The expanding and contracting modes of the velocity field are

clearly delineated. Expanding regions, corresponding with or sur-

rounding large and deep underdense voids, are identified as those

6 We have adopted a value of h = 0.7 (H0 ≡ 100 h km s−1 Mpc−1).

with red to yellow tones marking positive divergence modes. The

Sculptor and Fornax voids and the underdense regions around the

Coma cluster can be immediately recognized. Other conspicuous

expanding regions are that near the Camelopardalis cluster, located

at [SGX, SGY] ≈ [40, 45] h−1 Mpc, and the one at the right-hand

side of the Cetus wall at [SGX, SGY] ≈ [50, −55] h−1 Mpc.

The regions with a negative divergence are contracting, matter

is falling in along one or more directions. The strongest contrac-

tions, represented by the blue tones, are related to the peaks in the

density field which can be immediately identified with the most

massive structures located along this slice. The Hydra–Centaurus

supercluster is the most prominent region of infall. Easily rec-

ognizable are all clusters such as the Virgo, Camelopardalis and

Coma cluster, the Pisces–Perseus supercluster, the Cetus wall,

the Pavo–Indus–Telescopium complex, and partly also the Shap-

ley concentration. These high-contrast blue regions are embedded

within regions with more moderate infalling motions. These regions,

with green contour values, have densities slightly in excess of the

mean. They outline a percolating region with a roughly filamentary

shape.

In the interpretation of the velocity divergence map it is crucial

to take account of an important artefact: high amplitudes of the

velocity divergence are seemingly concentrated in the inner region

of the PSCz volume. This can be understood on the same grounds

as a similar tendency for the density field, the lack of small-scale

power in the outer regions as a result of the diminishing sampling

density. A correction for this effect is only possible on the basis of a

cosmological model assumption and does not fall within the context

of this study.

9.3 The density–velocity divergence relation

The velocity divergence and the density contrast are related via the

continuity equation (Peebles 1980). In the linear regime this is a

strictly linear one-to-one relation,

1

H
∇ · v(x, t) = − f (�m)

b
a(t) δ(x, t) , (12)
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Figure 12. The DTFE velocity divergence field on a smoothing scale of 3.8 h−1 Mpc (left-hand column) and 10 h−1 Mpc (right-hand column). The maps in

the consecutive rows concern the three mutually perpendicular central supergalactic planes: the XY, XZ and YZ planes (from top to bottom). Note that the map

on a scale of 3.8 h−1 Mpc is uniform only out to a radius of 30 h−1 Mpc, with a gradually diminishing resolution towards the outer edge of the sample volume.

Also compare the images with the density fields in Figs 8 and 9, they are approximately the negatives of the corresponding density fields. The grey-scale values

are in units of the Hubble parameter H0, with their values given in the bar at the top of the figure.

linking the (galaxy) density perturbation field δ to the peculiar ve-

locity field v via the factor f (�m) (see Peebles 1980). In this we

take into account that our discussion concerns the density field as

sampled by galaxies, whose distribution is supposed to be linearly

biased with respect to the underlying matter density. There remains

a one-to-one relation between velocity divergence and density into

the mild non-linear regime (see equation 13), which explains why

the map of the velocity divergence (11) is an almost near perfect

negative image of the density map (see Fig. 5).

The approximate validity of the linear divergence–density relation

(12), on a scale of RG = √
5 h−1 Mpc, over the PSCz volume can

be appreciated from the contour map in the right-hand frame of

Fig. 11. The map, in the same supergalactic XY plane as in the

left-hand frame, shows the difference between the divergence term

on the left-hand side of equation (12) and the density term on the

right-hand side, in units of km s−1 Mpc−1. Evidently, over the entire

volume the residual map is near uniform, with the exception of a

‘hotspot’ near [SGX, SGY] ≈ [−10, −10] h−1 Mpc. If anything,

we see a slight tendency for the differences to increase outward.

This is most likely to be understood from a different reaction of the

velocity field to the diminishing sampling density than the density

field.
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Figure 13. Scatter plot of density versus velocity divergence, in terms of

a contour plot of the density of scatter points. The solid line indicates the

linear density–velocity divergence relation. Two approximate non-linear re-

lations are also indicated, the short-dashed line depicts the approximation of

Bernardeau (1992), the long-dashed one the approximation by Nusser et al.

(1991).

The residual map’s Fig. 11 impression of near linearity is con-

firmed by the scatter plot between velocity divergence (∇ · v) and

(galaxy) density δ in Fig. 13. The scatter point density in the figure

is shown by means of a contour map of the scatter point density.

The scatter plot is compared with three different relations. Super-

imposed as a solid line is the linear relation, ∇ · v = −H0βδ. The

near perfect linearity of the (∇ · v)-δ relation reflects the origin of

the velocity estimates on the basis of a linearization process. Devi-

ations from linearity, be it minor, are observed only for the lowest

and highest density values.

Even in the quasi-linear and mild non-linear regime the one-to-

one correspondence between velocity divergence and density re-

mains intact, be it that it involves higher order terms (see Bernardeau

et al. 2002, for an extensive review). Within the context of Eule-

rian perturbation theory Bernardeau (1992) (B) derived an accurate

second-order approximation form the relation between the diver-

gence and the density perturbation δ(x). Nusser et al. (1991) (N)

derived a similar quasi-linear approximation within the context of

the Lagrangian–Zel’dovich approximation. According to these ap-

proximate non-linear relations,

1

H
∇ · v(x) =

⎧⎨⎩
3
2

f (�m)
{

1 − [1 + δ(x)]2/3
}

(B)

− f (�m) δ(x)
1+0.18 δ(x)

(N)

(13)

for a universe with Hubble parameter H(t) and matter density param-

eter �m. For comparison we have also included these approximate

relations for mild non-linear density and velocity fields in Fig. 13 (B:

the short-dashed line, N: the long-dashed line). These relations are

clearly too pronounced for the velocity divergence map of Fig. 11.

9.4 The velocity divergence PDF

The right-hand panels of Fig. 6 show the PDF for the DTFE velocity

divergence field. The nice mild non-Gaussian character of the PDF

(in the top lin–lin plot) argues for the quality of the DTFE velocity

field reconstructions: the DTFE velocity field interpolation scheme

is able to recover to considerable accuracy the velocity divergence

PDF into the non-linear regime from a discrete particle distribution.

It may also be noted that the nice mild non-linear character of the

DTFE density and velocity divergence field reconstructions are, at

hindsight, an indication for the validity of the ‘linearization’ proce-

dure of Branchini et al. (1999) into the early non-linear regime.

The velocity divergence PDF forms a near perfect mirror image of

the density field PDF (left-hand panel), to be expected on the basis

of the continuity equation through which the velocity divergence

and the density field are related (see Section 9.3). This relation is

reflected in the density and velocity divergence PDFs in the lin–lin

plots of the top row and is even more clear when comparing the lin–

log equivalents in the bottom row. DTFE is clearly able to sharply

follow the velocity divergence distribution, both on the negative

velocity divergence side corresponding to infalling motions and on

the positive velocity divergence end representative for the outflow

from void region.

It forms a contrast to the rather poor correspondence between the

density and velocity divergence distributions in the corresponding

reconstruction of Branchini et al. (1999): the lin–lin plots show

that they do not form each other’s mirror image. We may also note

that its velocity divergence distribution is considerably broader than

that of the equivalent DTFE PDF. This adheres to a known artefact

of grid-based velocity field interpolations: implicitly these yield

mass-weighted values whose PDFs have wider wings than would be

expected for the distribution of proper volume-weighted quantities

in the mild non-linear regime (Bernardeau & van de Weygaert 1996).

Bernardeau & van de Weygaert (1996) convincingly demon-

strated that the PDF recovered by Delaunay tessellation (i.e. DTFE)

interpolation closely adheres to the predictions of Eulerian perturba-

tion theory. The velocity divergence PDF is strongly sensitive to the

underlying cosmological parameters, in particular the cosmologi-

cal density parameter �m. By applying DTFE towards determining

the velocity divergence PDF this not only implies the possibility

to get an accurate estimate of �m but also one which circumvents

the usually involved degeneracy between the cosmic matter density

�m and the bias b between the matter and galaxy distribution. In a

follow-up study (Bernardeau & van de Weygaert 1997) successfully

tested this on a range of N-body simulations of structure formation,

showing Delaunay interpolation indeed recovered the right values

for �m.

The sensitivity of the PDF to �m is particularly marked near the

peak of the PDF and in the maximum void expansion rate, that is, the

maximum value of the velocity divergence θmax. The exact location

of the peak also includes a dependence on cosmological scenario

and level of non-linearity. To infer �m extra assumptions would

need to be invoked. It is more straightforward to read off the value

of �m from the characteristic sharp cut-off of the PDF on the side

of the positive velocity divergence values. This cut-off relates to the

maximum expansion rate of voids, which is predicted to be

θmax = 1.5 �0.6, (14)

in which we ignore the (rather minor) dynamical influence of a

cosmological constant. The value of 1.5 is the difference in value of

the Hubble parameter in an empty � = 0 universe and that in an EdS

universe � = 1, reflecting the fact that the interior of the deepest

voids locally mimic the behaviour of an � = 0 universe. Following

a related idea Dekel & Rees (1994) obtained a strong lower bound

on the value of �m ∼ 0.3 on the basis of an estimate of the value of

expansion rate of the nearby Sculptor void. However, for a proper

determination one should seek to carefully recover the sharp cut-off

of the PDF. Bernardeau & van de Weygaert (1996) detailed various

arguments why a proper determination of the cut-off is non-trivial.

They convincingly demonstrated the success of tessellation-based

methods in outlining the PDF’s sharp edge. Here we infer from the
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DTFE-determined PSCz velocity divergence PDF (Fig. 6) that

�m = 0.35 ± 0.04. (15)

This value agrees with the value determined on the basis of the PDF’s

peak (equation 14). The ∇ · v variation within each individual bins

is used to obtain the error estimate. Given that the input velocity

field has a value of β = 0.5, that is, � = 0.315 and b = 1, this

forms a confirmation of the ability of DTFE to self-consistently infer

the underlying value of cosmological parameters, in particular that

of �m.

1 0 V E L O C I T Y S H E A R A N D VO RT I C I T Y

The map of the amplitude of the shear component in the DTFE

velocity field in the supergalactic XY plane is shown in Fig. 14. The

map shows the DTFE estimate of the amplitude of the shear tensor,

σ̂ ≡ � (σ̂i j σ̂i j )
1/2, (16)

where σ̂i j is the symmetric traceless part of the DTFE-determined

velocity gradient estimate,

σ̂i j = 1

2

{
∂̂vi

∂x j
+ ∂̂v j

∂xi

}
− 1

3

(∇̂ · v) δi j . (17)

Shear flows are induced by the intrinsic asphericity of evolving

structures and by the external tidal stresses exerted by the surround-

ing (inhomogeneous) large-scale matter distribution. These flows

are a manifestation of the tidally induced anisotropic contraction of

matter into planar and filamentary features, locked into a coherent

pattern through highly dense compact clusters which form at the

peaks in the primordial density field. It forms the basis for our un-

derstanding of the cosmic web (Bond et al. 1996), (also see van de

Weygaert 2006).

The impression provided by the shear field in Fig. 14 is akin

to that of the velocity divergence distribution (Fig. 11) and that of

Figure 14. DTFE velocity shear field projected along the Z-supergalactic

plane. The slice corresponds to the one presented in Fig. 5. We have plotted

the velocity shear amplitude σ in units of the Hubble parameter. The colour

bar indicates the values of the velocity shear in the colour contour map.

the density distribution (Fig. 5). Evidently there is a strong cou-

pling between the density environment and the strength of the shear

field. The velocity shear attains the highest values in and near high-

density regions, while the large empty void regions are regions in

which shear flows are hardly relevant with respect to the radial out-

flow (i.e. the velocity divergence amplitude). This is entirely in line

with theoretical expectations (Hoffman 1986; Bertschinger & Jain

1994).

The spatial shear distribution suggests a very strong tidal force

field in the central region of the local Universe, in the supergalactic

XY plane. Most outstanding are the features in the supergalactic XY
plane, in particular the ridge running through the central universe

from the Pisces–Perseus supercluster towards the Shapley concen-

tration. On one hand, this impression forms a telling manifestation

of the characteristic quadrupolar pattern of the local mass distribu-

tion, defined by the Hydra–Centaurus supercluster (the GA region)

and the Perseus supercluster region. Even though undoubtedly real

this impression of a strong tidal field in the central region is par-

tially biased by the effect of a considerably better spatial resolution

in the central 30 h−1 Mpc of our sample than in the outer regions

and the resulting absence of the (stronger) higher frequency compo-

nents present in the centre. In order to be able to assess the impact

of this effect we compare the shear field maps for a smoothing ra-

dius of 3.8 h−1 Mpc with those for 12 h−1 Mpc in Fig. 15. While it

confirms the tendency of higher shear values in the central region

due to the resolved small-scale contributions, the 12 h−1 Mpc con-

vincingly delineates large-scale patterns responsible for consider-

able tidal stresses. The low-resolution, large-scale map does indeed

demonstrate the reality of the prominent tidal features in the su-

pergalactic (XY) plane. Its prominent dynamical role is additionally

emphasized by the low-resolution XZ map where the plane stands

out as the central edge marked by high shear values. Interesting fea-

tures may also be observed in other regions of the sample volume:

an interesting filamentary extension towards [SGY, SGZ] ≈ [−40,

−100] h−1 Mpc can be observed in the YZ map.

10.1 The DTFE vorticity map

Vorticity is not expected to play any role of significance as a result

of the ‘linearized’ origin of our PSCz velocities. The top-hat filter of

RTH = 5 h−1 Mpc used to defined the velocity sample is an assurance

for the linearity of practically all sample velocity data.

The presence of vorticity in our DTFE reconstructions should

therefore provide us with a reasonably good impression of the in-

fluence of systematic artefacts in our maps. Regions populated with

considerable large or abundant clusters (e.g. GA, Pisces–Perseus),

do retain some measure of vorticity, even after smoothing. Also

the DTFE method itself also introduces a small spurious vorticity

component as a result of its linear interpolation scheme. A careful

analysis of this artefact in our maps, and the effects for the DTFE

velocity reconstruction, will be presented in Romano-Diaz, van de

Weygaert & Schaap (in preparation).

1 1 S U M M A RY A N D D I S C U S S I O N

The DTFE (see Schaap & van de Weygaert 2000) has been applied

to a combined analysis of the density and velocity flow fields in

the local Universe. The prime objective of this study has been the

production of optimal resolution 3D maps of the volume-weighted

velocity and density fields throughout the nearby universe, the basis

for a detailed study of the structure and dynamics of the cosmic

web at each level probed by underlying galaxy sample. In order
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Figure 15. The DTFE velocity shear field on a smoothing scale of 3.8 h−1 Mpc (left-hand column) and 10 h−1 Mpc (right-hand column). The maps in the

consecutive rows concern the three mutually perpendicular central supergalactic planes: the XY, XZ and YZ planes (from top to bottom). Note that the map on

a scale of 3.8 h−1 Mpc is uniform only out to a radius of 30 h−1 Mpc, with a gradually diminishing resolution towards the outer edge of the sample volume.

Also compare the images with the density fields in Figs 8 and 9. The grey-scale values are in units of the Hubble parameter H0, with their values given in the

bar at the top of the figure.

to have a reasonably complete sample of galaxy peculiar velocities

throughout the surrounding local Universe we used the PSCz galaxy

redshift catalogue translated into galaxy positions and velocities

by means of the method I linearization process of Branchini et al.

(1999).

The spatial galaxy distribution of the PSCz catalogue defines a

Voronoi and Delaunay tessellation. These epitomize the most pure

locally defined division of space in the PSCz volume. The self-

adaptive nature of the Voronoi/Delaunay tessellations concerns both

spatial resolution and local geometry. The high-level sensitivity to

the local point distribution is exploited by DTFE (Schaap & van de

Weygaert 2000) to produce an estimate of the local density at each

sample point. The Delaunay tessellation is subsequently used as

adaptive multidimensional spatial interpolation grid. The construc-

tion of the Voronoi and Delaunay tessellation is the most demanding

task of the DTFE routine. Once this has been accomplished, they

can be used for both the density and velocity fields (and basically

any relevant field).

Because DTFE is based upon linear interpolation and involves

constant field gradients within each Delaunay tetrahedron, the

analysis of the cosmic velocity field automatically yields maps of

the velocity divergence, shear and even vorticity. The spatial dis-

tribution of these quantities in DTFE is marked by a discontinuous

zeroth-order map marked by Delaunay regions in which divergence,
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shear or vorticity has a constant value. To sensibly relate the DTFE

velocity divergence and shear fields it is necessary to smooth over

a scale comparable to that of the corresponding Delaunay cells.

Earlier studies (Schaap & van de Weygaert 2007) have made

clear that DTFE is particularly optimized for the analysis of mass

distributions marked by one or more of the essential aspects of the

non-linear cosmic web of the Mpc universe (Bond et al. 1996). One

of the main advantages of DTFE is its large dynamic range, al-

lowing it to trace small-scale structures along with the large-scale

environment in which they are embedded. The spatial and mor-

phological adaptivity of DTFE is ideally suited for dissecting the

essential components of the non-linear web-like cosmic matter dis-

tribution. It resolves a hierarchically structured matter distribution

to the smallest possible resolution scale set by the particle number

density. Perhaps most outstanding is the ability of DTFE to retain

the morphology, i.e. shape of the features and patterns in the matter

distribution: the characteristic anisotropic filamentary and planar

features of the cosmic web are fully reproduced in the continuous

DTFE density field (Schaap & van de Weygaert 2000). Also the third

major characteristic of the non-linear Mpc universe, the dominant

existence of near-empty voids, is resolved by DTFE. Both their flat

internal density distribution and their sharp outline and boundary

are recovered in detail, while shot-noise in these sparsely sampled

regions tends to be suppressed.

The maps of the PSCz local Universe reveal a sharply defined

density field in which many familiar structures and features can

be recognized at an optimal spatial resolution. The region around

the Local Group and its filamentary extension towards the Hydra–

Centaurus and Shapley complexes as well as the Pisces–Perseus

supercluster are prominently resolved in the DTFE density fields.

Moreover, these features are as clearly and sharply defined in the cor-

responding velocity flows. Perhaps the most outstanding features in

the velocity vector fields are the radially expanding void regions. In

comparison to earlier published maps of the density field and veloc-

ity flow in the PSCz sample volume (Branchini et al. 1999; Schmoldt

et al. 1999) the DTFE maps have a considerably sharper defined ap-

pearance. While conventional maps suppressed small-scale details

and were at loss in undersampled void regions, in particular with

respect to the interpolation of the velocity field, the DTFE fields

reveal a beautifully textured flow field. The DTFE flows are marked

by prominent bulk flows, shear flows and radial inflow (Coma clus-

ter). Arguably the most outstanding and unique feature of the DTFE

maps is the sharply defined radial outflow regions in and around un-

derdense voids, marking the dynamical importance of voids in the

local Universe.

The present study includes two specific aspects and challenges for

DTFE: (1) the application of DTFE to reconstruct the density field as

well as the corresponding velocity field in the same cosmic volume

and (2) the gradually diminishing spatial resolution as a function

of radial distance as a consequence of the flux-limited nature of the

PSCz sample.

While one may correct estimated density values by taking into

account the well-defined radial selection function, it is not possible

to correct for the loss in spatial resolution: the lower galaxy sampling

density goes along with a loss, at increasing distances, in spectral

coverage of the maps. A full recovery would have to involve pre-

conceived notions on the cosmological structure formation scenario,

i.e. the power spectrum. The relatively prominent central values in

the density, velocity divergence and shear maps are a reflection of

this effect. On the other hand, the velocity field itself – less affected

by the lack of high-frequency spectral power at large distances – for

all practical purposes appears to be uniformly covered by the DTFE

reconstruction. The sharply outlined edges of superclusters and the

radial outflow of voids are found throughout the PSCz volume.

We have addressed the relationship between the density field and

velocity field by correlating the density values with the local veloc-

ity divergence and shear. Overall, the linear density–velocity diver-

gence relationship is accurately reproduced. This reflects the origin

of the galaxy velocities, having been computed from a redshift map

through a linearization procedure. These simple quantitative rela-

tions do not express the spatial coherence and correlations within

the velocity field. The tight spatial correspondence between den-

sity features and velocity flows in the DTFE maps – voids with

radial outflow, elongated and flattened superclusters with bulk and

shear flows – does demonstrate the remarkable adaptive nature of

the DTFE technique and its promise of understanding the dynamics

of the cosmic web. The maximum expansion rate of voids defines a

sharp cut-off in the velocity divergence PDF. It enabled us to test the

self-consistency of the DTFE method. Indeed it confirmed the value

of �m ≈ 0.35 of the cosmology underlying the galaxy velocity data.

For furthering our insight into the velocity field in the nearby uni-

verse it would be desirable to be able to probe quasi-linear contribu-

tions to the velocity field. Techniques like the FAM-z of Branchini,

Eldar & Nusser (2002), applied in combination with the DTFE al-

gorithm, would offer a potentially promising approach. While this

study has shown the potential of DTFE towards a successful analysis

of velocity fields it concerns a test on the basis of a sample of pre-

processed galaxy velocities. This includes the assumption that the

velocity field linearization (Branchini et al. 1999) has successfully

dealt with redshift-space distortions and sampling effects.

Ultimately we will seek to develop a DTFE-based formalism to

directly analyse samples of galaxy peculiar velocities on the basis of

the ‘raw’ observational data. The challenge is found in a few aspects.

One aspect concerns errors and sampling effects. A second aspect

involves redshift distortions. A third complicating aspect involves

fundamental assumptions behind the velocity field reconstruction

procedure, such as the requirement of laminarity of the flow. An

extensive study of various sampling effects, such as decreased sam-

pling density and inhomogeneous sampling, on simulation-based

data do show that the noise level of the DTFE velocity reconstruc-

tions does increase but that this does not involve any systematic

shifts (Romano-Dı́az 2004). Given the acclaimed optimal triangu-

lation properties of Delaunay grids underlying the development of

DTFE this may not come as a surprise. The same study involved

tests of the effects of a variety of different error contributions. They

induced similar effects as a less balanced galaxy sampling. These

results will be presented in an extensive study and report on er-

ror and sampling effects in a forthcoming paper. More challenging

issues concern the physically more profound aspects of redshift dis-

tortions and higher order flow characteristics. As a first-order ver-

sion of the wider class of natural neighbour interpolation schemes

(Sibson 1980, 1981; Watson 1992), DTFE may be extended to a

higher order natural neighbour interpolation scheme based upon

the Delaunay tessellation of a galaxy sample. Such a formalism

would enable a more complex treatment of non-linear velocity flows,

possibly even of multistream flows. Already we have been work-

ing towards the implementation of these higher order interpolation

schemes (see van de Weygaert & Schaap 2007, for a review on

the basics), and we plan to look into the possibility on the basis of

routines made available through CGAL.7 On the other hand, highly

7 CGAL is a C
++ library of algorithms and data structures for Computational

Geometry, see www.cgal.org.
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mixed virialized regions will remain beyond the scope of these in-

terpolation techniques. This may hardly be considered a constraint

given the fact that for the foreseeable future the focus of nearly all

galaxy peculiar velocity surveys will be the dynamics of large-scale

structures. The inversion from redshift- to real-space data may be

facilitated and enabled by using the virtues of a Delaunay grid for

the solution of PDEs. The use of Delaunay tessellations as grids for

the numerical solution of PDEs has been first described by Braun

& Sambridge (1995), their success provides substantial imperative

for the formulation of the redshift- to real-space inversion following

these lines.

In the meantime DTFE has been elaborated upon through the de-

velopment of a number of specific feature detecting techniques. The

Multiscale Morphology Filter (MMF; Aragon et al. 2007) forms a

highly promising tool for selection and identification of filamentary

and planar structures and their spatial relationship with neighbour-

ing structures. The watershed-based void-detection algorithm devel-

oped by Platen et al. (2007) has been applied towards the analysis

of the hierarchical evolution of voids (see Sheth & van de Weygaert

2004). In all cases, the fully adaptive and optimal tessellation based

characteristics of DTFE form the crucial starting point.
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